Muutke küpsiste eelistusi

E-raamat: Fractals, Wavelets, and their Applications: Contributions from the International Conference and Workshop on Fractals and Wavelets

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.

Part I: Fractal Theory.- Introduction to Fractals.- Geometry of self similar sets.- An introduction to Julia and Fatou set.- Crazy topology in complex dynamics.- Measure preserving fractal homeomorphisms.- The dimension theory of almost self affine sets and measures.- Countable alphabet non autonomous self affine sets.- On transverse hyperplanes to self similar Jordan arcs.- Fractals in product fuzzy metric space.- Some properties on Koch curve.- Projections of Mandelbrot percolation in higher dimensions.- Some examples of finite type fractals in three dimensional space.- Fractals in partial metric spaces.- Part II: Wavelet Theory.- Frames and extension problems I.- Frames and extension problems II.- Local fractal functions and function spaces.- Some historical precedents of the fractal functions.- A new class of rational quadratic fractal function with positive shape preservation.- Interval wavelets determined by points on the circle.- Construction of multi scaling functions usin

g matrix polynomials.- A remark on reconstruction of splines from their local weighted average samples.- C1rational cubic fractal interpolation surface using functional values.- On fractal rational functions.- Part III: Applications of Fractals and Wavelets.- Innovation on the tortuous path: Fractal Electronics.- Permutation entropy analysis of EEG of mild cognitive impairment patients during memory activation task.- A multifractal based image analysis for cervical dysplasia classification.- Self similar network traffic modeling using fractal point process Markovian approach.- Validation of variance based fitting for self similar network traffic.- Self similar network traffic modeling using circulant Markov modulated poisson process.- Investigation of priority based optical packet switch under self similar variable length input traffic using matrix queuing theory.- Computationally efficient wavelet domain solver for fluorescence diffuse optical tomography.- Implementation of wavel

et based and discrete cosine based algorithms on panchromatic image.- Trend, time series and wavelet analysis of river water dynamics.- An efficient wavelet based approximation method to film pore diffusion model arising in chemical engineering.- A new wavelet based hybrid method for Fisher type equations.
Part I Fractal Theory
Introduction to Fractals
3(18)
Christoph Bandt
Geometry of Self-similar Sets
21(16)
Christoph Bandt
An Introduction to Julia and Fatou Sets
37(24)
Scott Sutherland
Parameter Planes for Complex Analytic Maps
61(18)
Robert L. Devaney
Measure Preserving Fractal Homeomorphisms
79(24)
Michael F. Barnsley
Brendan Harding
Miroslav Rypka
The Dimension Theory of Almost Self-affine Sets and Measures
103(26)
Karoly Simon
Countable Alphabet Non-autonomous Self-affine Sets
129(18)
Mariusz Urbanski
On Transverse Hyperplanes to Self-similar Jordan Arcs
147(10)
Andrey Tetenov
Fractals in Product Fuzzy Metric Space
157(8)
R. Uthayakumar
A. Gowrisankar
Some Properties on Koch Curve
165(10)
R. Uthayakumar
A. Nalayini Devi
Projections of Mandelbrot Percolation in Higher Dimensions
175(16)
Karoly Simon
Lajos Vago
Some Examples of Finite Type Fractals in Three-Dimensional Space
191(12)
Mai The Duy
Fractals in Partial Metric Spaces
203(16)
S. Minirani
Sunil Mathew
Part II Wavelet Theory
Frames and Extension Problems I
219(16)
Ole Christensen
Frames and Extension Problems II
235(10)
Ole Christensen
Hong Oh Kim
Rae Young Kim
Local Fractal Functions and Function Spaces
245(26)
Peter R. Massopust
Some Historical Precedents of the Fractal Functions
271(12)
M.A. Navascues
M.V. Sebastian
A New Class of Rational Quadratic Fractal Functions with Positive Shape Preservation
283(20)
A.K.B. Chand
P. Viswanathan
M.A. Navascues
Interval Wavelet Sets Determined by Points on the Circle
303(16)
Divya Singh
Inverse Representation Theorem for Matrix Polynomials and Multiscaling Functions
319(22)
M. Mubeen
V. Narayanan
A Remark on Reconstruction of Splines from Their Local Weighted Average Samples
341(8)
P. Devaraj
S. Yugesh
C1-Rational Cubic Fractal Interpolation Surface Using Functional Values
349(20)
A.K.B. Chand
N. Vijender
On Fractal Rational Functions
369(16)
P. Viswanathan
A.K.B. Chand
Part III Applications of Fractals and Wavelets
Innovation on the Tortuous Path: Fractal Electronics
385(10)
Nathan Cohen
Permutation Entropy Analysis of EEG of Mild Cognitive Impairment Patients During Memory Activation Task
395(12)
Leena T. Timothy
Bindu M. Krishna
Murali Krishna Menon
Usha Nair
A Multifractal-Based Image Analysis for Cervical Dysplasia Classification
407(6)
P. Singh
J. Jagtap
C. Pantola
A. Agarwal
A. Pradhan
Self-Similar Network Traffic Modelling Using Fractal Point Process-Markovian Approach
413(14)
Rajaiah Dasari
Ramesh Renikunta
Malla Reddy Perati
Validation of Variance Based Fitting for Self-similar Network Traffic
427(10)
Ramesh Renikunta
Rajaiah Dasari
Ranadheer Donthi
Malla Reddy Perati
Self-Similar Network Traffic Modeling Using Circulant Markov Modulated Poisson Process
437(8)
Ranadheer Donthi
Ramesh Renikunta
Rajaiah Dasari
Malla Reddy Perati
Investigation of Priority Based Optical Packet Switch Under Self-Similar Variable Length Input Traffic Using Matrix Queueing Theory
445(12)
Ravi Kumar Gudimalla
Malla Reddy Perati
Computationally Efficient Wavelet Domain Solver for Florescence Diffuse Optical Tomography
457(14)
K.J. Francis
I. Jose
Implementation of Wavelet Based and Discrete Cosine Based Algorithm on Panchromatic Image
471(8)
Jyoti Sarup
Jyoti Bharti
Arpita Baronia
Trend, Time Series, and Wavelet Analysis of River Water Dynamics
479(12)
Kulwinder Singh Parmar
Rashmi Bhardwaj
An Efficient Wavelet Based Approximation Method to Film-Pore Diffusion Model Arising in Chemical Engineering
491(10)
Pandy Pirabaharan
R. David Chandrakumar
G. Hariharan
A New Wavelet-Based Hybrid Method for Fisher Type Equation
501
R. Rajaram
G. Hariharan
Some key contributors and editors include Robert Devaney, Michael Barnsley, Christoph Bandt, M.Urbanski, Mark Pollicott, Peter Massopust who are the founders of fractals; Scott Sutherland, Jeff Geronimo who are the pioneers in the field of Complex Dynamics; Bin Han, Karoly Simon and Vladimir Protasov who are the experts in the area of Wavelets.