Preface |
|
xi | |
|
|
1 | (6) |
|
|
6 | (1) |
|
|
6 | (1) |
Part I The General Case |
|
7 | (178) |
|
2 Frameworks and Rigidity |
|
|
9 | (8) |
|
|
9 | (1) |
|
2.2 Definition of a Framework |
|
|
9 | (1) |
|
|
10 | (1) |
|
2.4 Definitions of Rigidity |
|
|
11 | (5) |
|
|
16 | (1) |
|
3 First-Order Analysis of Frameworks |
|
|
17 | (45) |
|
|
17 | (1) |
|
|
17 | (10) |
|
|
27 | (8) |
|
3.4 Static/Kinematic Duality |
|
|
35 | (2) |
|
|
37 | (4) |
|
3.6 First-Order Stiffness |
|
|
41 | (1) |
|
3.7 Example: Structural Analysis of a Pin-Jointed Cantilever |
|
|
42 | (5) |
|
3.8 The Basic Rigidity Theorem |
|
|
47 | (2) |
|
3.9 Another Example of Infinitesimal Rigidity |
|
|
49 | (6) |
|
3.10 Projective Transformations |
|
|
55 | (4) |
|
|
59 | (3) |
|
|
62 | (16) |
|
|
62 | (2) |
|
|
64 | (1) |
|
4.3 Infinitesimal Rigidity |
|
|
64 | (2) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
68 | (1) |
|
4.7 Equivalence of Static and Infinitesimal Rigidity |
|
|
69 | (2) |
|
4.8 Roth-Whiteley Criterion for Infinitesimal Rigidity |
|
|
71 | (1) |
|
4.9 First-Order Stiffness |
|
|
72 | (1) |
|
4.10 Application to Circle Packings |
|
|
73 | (3) |
|
|
76 | (2) |
|
5 Energy Functions and the Stress Matrix |
|
|
78 | (32) |
|
|
78 | (1) |
|
5.2 Energy Functions and Rigidity |
|
|
78 | (3) |
|
5.3 Quadratic Energy Function |
|
|
81 | (1) |
|
|
81 | (3) |
|
5.5 The Principle of Least Energy |
|
|
84 | (2) |
|
|
86 | (3) |
|
5.7 The Configuration Matrix |
|
|
89 | (1) |
|
5.8 Universal Configurations Exist |
|
|
90 | (2) |
|
5.9 Projective Invariance |
|
|
92 | (2) |
|
5.10 Unyielding and Globally Rigid Examples |
|
|
94 | (1) |
|
5.11 Universal Tensegrities |
|
|
95 | (1) |
|
5.12 Small Unyielding Tensegrities |
|
|
95 | (3) |
|
5.13 Affine Motions Revisited |
|
|
98 | (3) |
|
5.14 The Fundamental Theorem of Tensegrity Structures |
|
|
101 | (6) |
|
|
107 | (3) |
|
|
110 | (25) |
|
|
110 | (1) |
|
6.2 A General Energy Function |
|
|
110 | (9) |
|
|
119 | (2) |
|
6.4 Reducing the Calculation |
|
|
121 | (1) |
|
6.5 Second-Order Rigidity |
|
|
121 | (4) |
|
6.6 Calculating Prestressability and Second-Order Rigidity |
|
|
125 | (2) |
|
|
127 | (3) |
|
|
130 | (2) |
|
|
132 | (3) |
|
|
135 | (20) |
|
|
135 | (1) |
|
7.2 Definition of Generic |
|
|
135 | (1) |
|
7.3 Infinitesimal Rigidity is a Generic Property |
|
|
136 | (3) |
|
7.4 Necessary Conditions for Being Generically Rigid |
|
|
139 | (1) |
|
7.5 Generic Rigidity in the Plane |
|
|
140 | (3) |
|
|
143 | (3) |
|
|
146 | (1) |
|
7.8 Generic Global Rigidity |
|
|
147 | (6) |
|
|
153 | (1) |
|
|
153 | (2) |
|
|
155 | (30) |
|
|
155 | (1) |
|
8.2 Finite Mechanisms Using the Rigidity Map |
|
|
156 | (1) |
|
8.3 Finite Mechanisms Using Symmetry |
|
|
157 | (4) |
|
8.4 Algebraic Methods for Creating Finite Mechanisms |
|
|
161 | (1) |
|
|
162 | (3) |
|
8.6 A Triangulated Surface that is a Finite Mechanism |
|
|
165 | (5) |
|
8.7 Carpenter's Rule Problem |
|
|
170 | (6) |
|
8.8 Algebraic Sets and Semi-Algebraic Sets |
|
|
176 | (5) |
|
|
181 | (4) |
Part II Symmetric Structures |
|
185 | (84) |
|
9 Groups and Representation Theory |
|
|
187 | (18) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
188 | (5) |
|
9.4 Homomorphisms and Isomorphisms of Groups |
|
|
193 | (2) |
|
|
195 | (10) |
|
10 First-Order Symmetry Analysis |
|
|
205 | (29) |
|
10.1 Internal and External Vector Spaces |
|
|
205 | (1) |
|
10.2 Decomposition of Internal and External Vector Spaces |
|
|
206 | (3) |
|
10.3 Internal and External Vector Spaces as RG-Modules |
|
|
209 | (9) |
|
10.4 Symmetry Operations, Equilibrium and Compatibility - RG-Homomorphisms |
|
|
218 | (4) |
|
10.5 Decomposition of Internal and External RG-Modules |
|
|
222 | (7) |
|
10.6 Irreducible Submodules |
|
|
229 | (5) |
|
11 Generating Stable Symmetric Tensegrities |
|
|
234 | (35) |
|
11.1 Symmetric Tensegrities |
|
|
234 | (1) |
|
11.2 Some Group Definitions |
|
|
234 | (3) |
|
11.3 Irreducible Components |
|
|
237 | (3) |
|
11.4 Groups for 3-Dimensional Examples |
|
|
240 | (1) |
|
11.5 Presentation of Groups |
|
|
241 | (1) |
|
11.6 Representations for Groups of Interest |
|
|
241 | (22) |
|
11.7 Non-Transitive Examples |
|
|
263 | (2) |
|
|
265 | (4) |
Appendix A Useful Theorems and Proofs |
|
269 | (2) |
|
|
269 | (1) |
|
A.2 Proof for the Cusp Mechanism |
|
|
270 | (1) |
References |
|
271 | (9) |
Index |
|
280 | |