Muutke küpsiste eelistusi

E-raamat: Free Space Optical Systems Engineering: Design and Analysis

  • Formaat - PDF+DRM
  • Hind: 149,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Gets you quickly up to speed with the theoretical and practical aspects of free space optical systems engineering design and analysis

One of today's fastest growing system design and analysis disciplines is free space optical systems engineering for communications and remote sensing applications. It is concerned with creating a light signal with certain characteristics, how this signal is affected and changed by the medium it traverses, how these effects can be mitigated both pre- and post-detection, and if after detection, it can be differentiated from noise under a certain standard, e.g., receiver operating characteristic. Free space optical systems engineering is a complex process to design against and analyze. While there are several good introductory texts devoted to key aspects of opticssuch as lens design, lasers, detectors, fiber and free space, optical communications, and remote sensinguntil now, there were none offering comprehensive coverage of the basics needed for optical systems engineering. If you're an upper-division undergraduate, or first-year graduate student, looking to acquire a practical understanding of electro-optical engineering basics, this book is intended for you. Topics and tools are covered that will prepare you for graduate research and engineering in either an academic or commercial environment. If you are an engineer or scientist considering making the move into the opportunity rich field of optics, this all-in-one guide brings you up to speed with everything you need to know to hit the ground running, leveraging your experience and expertise acquired previously in alternate fields. Following an overview of the mathematical fundamentals, this book provides a concise, yet thorough coverage of, among other crucial topics:





Maxwell Equations, Geometrical Optics, Fourier Optics, Partial Coherence theory Linear algebra, Basic probability theory, Statistics, Detection and Estimation theory, Replacement Model detection theory, LADAR/LIDAR detection theory, optical communications theory Critical aspects of atmospheric propagation in real environments, including commonly used models for characterizing beam, and spherical and plane wave propagation through free space, turbulent and particulate channels Lasers, blackbodies/graybodies sources and photodetectors (e.g., PIN, ADP, PMT) and their inherent internal noise sources

The book provides clear, detailed discussions of the basics for free space optical systems design and analysis, along with a wealth of worked examples and practice problemsfound throughout the book and on a companion website. Their intent is to help you test and hone your skill set and assess your comprehension of this important area. Free Space Optical Systems Engineering is an indispensable introduction for students and professionals alike.

 
Preface xii
1 Mathematical Preliminaries 1(50)
1.1 Introduction
1(1)
1.2 Linear Algebra
1(8)
1.2.1 Matrices and Vectors
2(1)
1.2.2 Linear Operations
2(1)
1.2.3 Traces, Determinants, and Inverses
3(4)
1.2.4 Inner Products, Norms, and Orthogonality
7(1)
1.2.5 Eigenvalues, Eigenvectors, and Rank
8(1)
1.2.6 Quadratic Forms and Positive Definite Matrices
8(1)
1.2.7 Gradients, Jacobians, and Hessians
8(1)
1.3 Fourier Series
9(6)
1.3.1 Real Fourier Series
9(1)
1.3.2 Complex Fourier Series
10(1)
1.3.3 Effects of Finite Fourier Series Use
11(3)
1.3.4 Some Useful Properties of Fourier Series
14(1)
1.4 Fourier Transforms
15(5)
1.4.1 Some General Properties
15(5)
1.5 Dirac Delta Function
20(1)
1.6 Probability Theory
21(19)
1.6.1 Axioms of Probability
21(2)
1.6.2 Conditional Probabilities
23(2)
1.6.3 Probability and Cumulative Density Functions
25(2)
1.6.4 Probability Mass Function
27(1)
1.6.5 Expectation and Moments of a Scalar Random Variable
28(1)
1.6.6 Joint PDF and CDF of Two Random Variables
29(1)
1.6.7 Independent Random Variables
29(1)
1.6.8 Vector-Valued Random Variables
30(1)
1.6.9 Gaussian Random Variables
31(2)
1.6.10 Quadratic and Quartic Forms
33(1)
1.6.11 Chi-Squared Distributed Random Variable
34(1)
1.6.12 Binomial Distribution
35(2)
1.6.13 Poisson Distribution
37(1)
1.6.14 Random Processes
38(2)
1.7 Decibels
40(2)
1.8 Problems
42(6)
References
48(3)
2 Fourier Optics Basics 51(44)
2.1 Introduction
51(1)
2.2 The Maxwell Equations
52(3)
2.3 The Rayleigh-Sommerfeld-Debye Theory of Diffraction
55(4)
2.4 The Huygens-Fresnel-Kirchhoff Theory of Diffraction
59(9)
2.5 Fraunhofer Diffraction
68(8)
2.6 Bringing Fraunhofer Diffraction into the Near Field
76(6)
2.7 Imperfect Imaging
82(2)
2.8 The Rayleigh Resolution Criterion
84(1)
2.9 The Sampling Theorem
85(4)
2.10 Problems
89(4)
References
93(2)
3 Geometrical Optics 95(28)
3.1 Introduction
95(1)
3.2 The Foundations of Geometrical Optics-Eikonal Equation and Fermat Principle
96(2)
3.3 Refraction and Reflection of Light Rays
98(3)
3.4 Geometrical Optics Nomenclature
101(2)
3.5 Imaging System Design Basics
103(6)
3.6 Optical Invariant
109(2)
3.7 Another View of Lens Theory
111(2)
3.8 Apertures and Field Stops
113(6)
3.8.1 Aperture Stop
113(1)
3.8.2 Entrance and Exit Pupils
114(1)
3.8.3 Field Stop and Chief and Marginal Rays
115(2)
3.8.4 Entrance and Exit Windows
117(2)
3.8.5 Baffles
119(1)
3.9 Problems
119(2)
References
121(2)
4 Radiometry 123(30)
4.1 Introduction
123(1)
4.2 Basic Geometrical Definitions
124(3)
4.3 Radiometric Parameters
127(10)
4.3.1 Radiant Flux (Radiant Power)
129(1)
4.3.2 Radiant Intensity
130(1)
4.3.3 Radiance
130(2)
4.3.4 Etendue
132(3)
4.3.5 Radiant Flux Density (Irradiance and Radiant Exitance)
135(1)
4.3.6 Bidirectional Reflectance Distribution Function
135(1)
4.3.7 Directional Hemispheric Reflectance
136(1)
4.3.8 Specular Surfaces
136(1)
4.4 Lambertian Surfaces and Albedo
137(1)
4.5 Spectral Radiant Emittance and Power
138(1)
4.6 Irradiance from a Lambertian Source
139(4)
4.7 The Radiometry of Images
143(2)
4.8 Blackbody Radiation Sources
145(6)
4.9 Problems
151(1)
References
151(2)
5 Characterizing Optical Imaging Performance 153(48)
5.1 Introduction
153(1)
5.2 Linearity and Space Variance of the Optical System or Optical Channel
154(2)
5.3 Spatial Filter Theory of Image Formation
156(4)
5.4 Linear Filter Theory of Incoherent Image Formation
160(2)
5.5 The Modulation Transfer Function
162(5)
5.6 The Duffieux Formula
167(7)
5.7 Obscured Aperture OTF
174(10)
5.7.1 Aberrations
179(5)
5.8 High-Order Aberration Effects Characterization
184(7)
5.9 The Strehl Ratio
191(2)
5.10 Multiple Systems Transfer Function
193(2)
5.11 Linear Systems Summary
195(3)
References
198(3)
6 Partial Coherence Theory 201(38)
6.1 Introduction
201(1)
6.2 Radiation Fluctuation
202(3)
6.3 Interference and Temporal Coherence
205(9)
6.4 Interference and Spatial Coherence
214(5)
6.5 Coherent Light Propagating Through a Simple Lens System
219(12)
6.6 Partially Coherent Imaging Through any Optical System
231(2)
6.7 Van Cittert-Zernike Theorem
233(2)
6.8 Problems
235(2)
References
237(2)
7 Optical Channel Effects 239(60)
7.1 Introduction
239(1)
7.2 Essential Concepts in Radiative Transfer
239(6)
7.3 The Radiative Transfer Equation
245(6)
7.4 Mutual Coherence Function for an Aerosol Atmosphere
251(4)
7.5 Mutual Coherence Function for a Molecular Atmosphere
255(1)
7.6 Mutual Coherence Function for an Inhomogeneous Turbulent Atmosphere
256(6)
7.7 Laser Beam Propagation in the Total Atmosphere
262(10)
7.8 Key Parameters for Analyzing Light Propagation Through Gradient Turbulence
272(6)
7.9 Two Refractive Index Structure Parameter Models for the Earth's Atmosphere
278(4)
7.10 Engineering Equations for Light Propagation in the Ocean and Clouds
282(12)
7.11 Problems
294(1)
References
295(4)
8 Optical Receivers 299(56)
8.1 Introduction
299(1)
8.2 Optical Detectors
300(25)
8.2.1 Performance Criteria
300(2)
8.2.2 Thermal Detectors
302(1)
8.2.3 Photoemissive Detectors
302(3)
8.2.4 Semiconductor Photodetectors
305(20)
8.2.4.1 Photodiode Device Overview
306(2)
8.2.4.2 Photodiode Physics
308(10)
8.2.4.3 The Diode Laws
318(1)
8.2.4.4 Junction Photodiodes
319(4)
8.2.4.5 Photodiode Response Time
323(2)
8.2.5 Photodiode Array and Charge-Coupled Devices
325(1)
8.3 Noise Mechanisms in Optical Receivers
325(10)
8.3.1 Shot Noise
326(4)
8.3.1.1 Quantum Shot Noise
327(3)
8.3.1.2 Dark Current Shot Noise
330(1)
8.3.2 Erbium-Doped Fiber Amplifier (EDFA) Noise
330(1)
8.3.3 Relative Intensity Noise
331(2)
8.3.4 More Conventional Noise Sources
333(2)
8.3.4.1 Thermal Noise
334(1)
8.3.4.2 Flicker Noise
334(1)
8.3.4.3 Current Noise
334(1)
8.3.4.4 Phase Noise
335(1)
8.4 Performance Measures
335(15)
8.4.1 Signal-to-Noise Ratio
336(2)
8.4.2 The Optical Signal-to-Noise Ratio
338(7)
8.4.3 The Many Faces of the Signal-to-Noise Ratio
345(1)
8.4.4 Noise Equivalent Power and Minimum Detectable Power
346(1)
8.4.5 Receiver Sensitivity
347(3)
8.5 Problems
350(3)
References
353(2)
9 Signal Detection and Estimation Theory 355(88)
9.1 Introduction
355(1)
9.2 Classical Statistical Detection Theory
356(9)
9.2.1 The Bayes Criterion
358(2)
9.2.2 The Minimax Criterion
360(1)
9.2.3 The Neyman-Pearson Criterion
361(4)
9.3 Testing of Simple Hypotheses Using Multiple Measurements
365(9)
9.4 Constant False Alarm Rate (CFAR) Detection
374(1)
9.5 Optical Communications
375(14)
9.5.1 Receiver Sensitivity for System Noise-Limited Communications
375(6)
9.5.2 Receiver Sensitivity for Quantum-Limited Communications
381(8)
9.6 Laser Radar (LADAR) and LIDAR
389(19)
9.6.1 Background
389(3)
9.6.2 Coherent Laser Radar
392(6)
9.6.2.1 Coherent Laser Radar Probability of False Alarm
395(2)
9.6.2.2 Coherent Laser Radar Probability of Detection
397(1)
9.6.3 Continuous Direct Detection Intensity Statistics
398(3)
9.6.3.1 Continuous Direct Detection Probability of False Alarm
399(1)
9.6.3.2 Continuous Direct Detection Probability of Detection for a Diffuse Target
399(2)
9.6.3.3 Continuous Direct Detection Probability of Detection for a Glint Target
401(1)
9.6.4 Photon-Counting Direct Detection Intensity Statistics
401(3)
9.6.4.1 Photon-Counting Direct Detection Probability of False Alarm
402(1)
9.6.4.2 Photon-Counting Direct Detection Probability of Detection-Diffuse Target
403(1)
9.6.4.3 Photon-Counting Direct Detection Probability of Detection-Glint Target
404(1)
9.6.5 LIDAR
404(4)
9.7 Resolved Target Detection in Correlated Background Clutter and Common System Noise
408(7)
9.8 Zero Contrast Target Detection in Background Clutter
415(1)
9.9 Multispectral Signal-Plus-Noise/Noise-Only Target Detection in Clutter
416(11)
9.10 Resolved Target Detection in Correlated Dual-Band Multispectral Image Sets
427(7)
9.11 Image Whitener
434(3)
9.11.1 Orthogonal Sets
434(1)
9.11.2 Gram-Schmidt Orthogonalization Theory
435(1)
9.11.3 Prewhitening Filter Using the Gram-Schmidt Process
436(1)
9.12 Problems
437(3)
References
440(3)
10 Laser Sources 443(42)
10.1 Introduction
443(1)
10.2 Spontaneous and Stimulated Emission Processes
444(10)
10.2.1 The Two-Level System
444(7)
10.2.2 The Three-Level System
451(2)
10.2.3 The Four-Level System
453(1)
10.3 Laser Pumping
454(2)
10.3.1 Laser Pumping without Amplifier Radiation
454(1)
10.3.2 Laser Pumping with Amplifier Radiation
455(1)
10.4 Laser Gain and Phase-Shift Coefficients
456(7)
10.5 Laser Cavity Gains and Losses
463(3)
10.6 Optical Resonators
466(8)
10.6.1 Planar Mirror Resonators-Longitudinal Modes
466(5)
10.6.2 Planar Mirror Resonators-Transverse Modes
471(3)
10.7 The ABCD Matrix and Resonator Stability
474(3)
10.8 Stability of a Two-Mirror Resonator
477(2)
10.9 Problems
479(3)
References
482(3)
Appendix A: Stationary Phase And Saddle Point Methods 485(4)
A.1 Introduction
485(1)
A.2 The Method Of Stationary Phase
485(2)
A.3 Saddle Point Method
487(2)
Appendix B: Eye Diagram And Its Interpretation 489(2)
B.1 Introduction
489(1)
B.2 Eye Diagram Overview
489(2)
Appendix C: Vector-Space Image Representation 491(4)
C.1 Introduction
491(1)
C.2 Basic Formalism
491(2)
Reference
493(2)
Appendix D: Paraxial Ray Tracing-ABCD Matrix 495(8)
D.1 Introduction
495(1)
D.2 Basic Formalism
495(7)
D.2.1 Propagation In A Homogeneous Medium
497(1)
D.2.2 Propagation Against A Curved Interface
498(1)
D.2.3 Propagation Into A Refractive Index Interface
499(3)
References
502(1)
Index 503
Larry B. Stotts, Ph.D., is a Resident Consultant at Science and Technology Associates in Arlington, Virginia. He received his B.A. in Applied Physics and Information Sciences and his Ph.D. in Electrical Engineering (Communications Systems), both from the University of California, San Diego. He has more than 40 years' experience in optical communications and remote sensing, optical systems engineering, avionics and optical navigation systems. Dr. Stotts is a Fellow of IEEE and SPIE, and a Senior Member of the Optical Society of America.