Muutke küpsiste eelistusi

E-raamat: Freeform Optics for LED Packages and Applications

, , (Huazhong University of Science and Technology, Wuhan, Hubei, China),
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 24-Aug-2017
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118750032
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 149,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 24-Aug-2017
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118750032
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A practical introduction to state-of-the-art freeform optics design for LED packages and applications

By affording designers the freedom to create complex, aspherical optical surfaces with minimal or no aberrations, freeform design transcends the constraints imposed by hundreds of years of optics design and fabrication. Combining unprecedented design freedom with precise light irradiation control, freeform optics design is also revolutionizing the design and manufacture of high quality LED lighting. The first and only book of its kind, Freeform Optics for LED Packages and Applications helps put readers at the forefront of the freeform optics revolution.

Designed to function as both an authoritative review of the current state of the industry and a practical introduction to advanced optical design for LED lighting, this book makes learning and mastering freeform optics skills simpler and easier than ever before with:





Real-world examples and case studies systematically describing an array of algorithms and designsfrom new freeform algorithms to design methods to advanced optical designs Coding for all freeform optics algorithms coveredmakes it easier and more convenient to start developing points of freeform optics and construct lenses or reflectors, right away Case studies of a range of products, including designs for a freeform optics LED bulb, an LED spotlight, LED street lights, an LED BLU, and many more 

Freeform Optics for LED Packages and Applications is must-reading for optical design engineers and LED researchers, as well as advanced-level students with an interest in LED lighting. It is also an indispensable working resource design practitioners within the LED lighting industry.
Preface xi
1 Introduction 1(14)
1.1 Overview of LED Lighting
1(4)
1.2 Development Trends of LED Packaging and Applications
5(2)
1.3 Three Key Issues of Optical Design of LED Lighting
7(3)
1.3.1 System Luminous Efficiency
7(1)
1.3.2 Controllable Light Pattern
7(1)
1.3.3 Spatial Color Uniformity
8(2)
1.4 Introduction of Freeform Optics
10(2)
References
12(3)
2 Review of Main Algorithms of Freeform Optics for LED Lighting 15(10)
2.1 Introduction
15(1)
2.2 Tailored Design Method
16(1)
2.3 SMS Design Method
17(1)
2.4 Light Energy Mapping Design Method
18(1)
2.5 Generalized Functional Design Method
19(3)
2.6 Design Method for Uniform Illumination with Multiple Sources
22(1)
References
22(3)
3 Basic Algorithms of Freeform Optics for LED Lighting 25(46)
3.1 Introduction
25(1)
3.2 Circularly Symmetrical Freeform Lens-Point Source
25(17)
3.2.1 Freeform Lens for Large Emitting Angles
26(7)
3.2.1.1 Step
1. Establish a Light Energy Mapping Relationship between the Light Source and Target
27(4)
3.2.1.2 Step
2. Construct a Freeform Lens
31(2)
3.2.1.3 Step
3. Validation and Optimization
33(1)
3.2.2 TIR-Freeform Lens for Small Emitting Angle
33(6)
3.2.3 Circularly Symmetrical Double Surfaces Freeform Lens
39(3)
3.3 Circularly Symmetrical Freeform Lens-Extended Source
42(6)
3.3.1.1 Step
1. Construction of a Point Source Freeform Lens
45(1)
3.3.1.2 Step
2. Calculation of Feedback Optimization Ratios
45(1)
3.3.1.3 Step
3. Grids Redivision of the Target Plane and Light Source
46(1)
3.3.1.4 Step
4. Rebuild the Energy Relationship between the Light Source and Target Plane
46(1)
3.3.1.5 Step
5. Construction of a Freeform Lens for an Extended Source
47(1)
3.3.1.6 Step
6. Ray-Tracing Simulation and Feedback Reversing Optimization
47(1)
3.4 Noncircularly Symmetrical Freeform Lens-Point Source
48(12)
3.4.1 Discontinuous Freeform Lens Algorithm
49(6)
3.4.1.1 Step
1. Establishment of a Light Energy Mapping Relationship
49(3)
3.4.1.2 Step
2. Construction of the Lens
52(3)
3.4.1.3 Step
3. Validation of Lens Design
55(1)
3.4.2 Continuous Freeform Lens Algorithm
55(8)
3.4.2.1 Radiate Grid Light Energy Mapping
57(1)
3.4.2.2 Rectangular Grid Light Energy Mapping
58(2)
3.5 Noncircularly Symmetrical Freeform Lens-Extended Source
60(3)
3.5.1.1 Step
1. Establishment of the Light Energy Mapping Relationship
61(1)
3.5.1.2 Step
2. Construction of a Freeform Lens
61(1)
3.5.1.3 Step
3. Validation of Lens Design
62(1)
3.6 Reversing the Design Method for Uniform Illumination of LED Arrays
63(5)
3.6.1 Reversing the Design Method of LIDC for Uniform Illumination
64(2)
3.6.2 Algorithm of a Freeform Lens for the Required LIDC
66(2)
References
68(3)
4 Application-Specific LED Package Integrated with a Freeform Lens 71(28)
4.1 Application-Specific LED Package (ASLP) Design Concept
71(1)
4.2 ASLP Single Module
72(13)
4.2.1 Design Method of a Compact Freeform Lens
72(1)
4.2.2 Design of the ASLP Module
73(3)
4.2.2.1 Optical Modeling
73(1)
4.2.2.2 Design of a Compact Freeform Lens
73(1)
4.2.2.3 ASLP Module
74(2)
4.2.3 Numerical Analyses and Tolerance Analyses
76(11)
4.2.3.1 Numerical Simulation and Analyses
76(1)
4.2.3.2 Tolerance Analyses
77(4)
4.2.3.3 Experiments
81(4)
4.3 ASLP Array Module
85(2)
4.4 ASLP System Integrated with Multiple Functions
87(9)
4.4.1 Optical Design
89(2)
4.4.1.1 Problem Statement
89(1)
4.4.1.2 Optical Modeling
89(1)
4.4.1.3 Design of a Freeform Lens
90(1)
4.4.1.4 Simulation of Lighting Performance
91(1)
4.4.2 Thermal Management
91(3)
4.4.3 ASLP Module
94(2)
References
96(3)
5 Freeform Optics for LED Indoor Lighting 99(26)
5.1 Introduction
99(1)
5.2 A Large-Emitting-Angle Freeform Lens with a Small LED Source
99(9)
5.2.1 A Freeform Lens for a Philip Lumileds K2 LED
100(3)
5.2.2 Freeform Lens for a CREE XLamp XR-E LED
103(5)
5.3 A Large-Emitting-Angle Freeform Lens with an Extended Source
108(2)
5.3.1 Target Plane Grids Optimization
108(1)
5.3.2 Light Source Grids Optimization
108(1)
5.3.3 Target Plane and Light Source Grids Coupling Optimization
109(1)
5.4 A Small-Emitting-Angle Freeform Lens with a Small LED Source
110(3)
5.5 A Double-Surface Freeform Lens for Uniform Illumination
113(4)
5.5.1 Design Example 1
114(1)
5.5.2 Design Example 2
115(1)
5.5.3 Design Example 3
116(1)
5.6 A Freeform Lens for Uniform Illumination of an LED High Bay Lamp Array
117(7)
5.6.1 Design Concept
117(1)
5.6.2 Design Case
118(8)
5.6.2.1 Algorithms and Design Procedure
118(1)
5.6.2.2 Optical Structures
119(2)
5.6.2.3 Monte Carlo Optical Simulation
121(3)
References
124(1)
6 Freeform Optics for LED Road Lighting 125(56)
6.1 Introduction
125(1)
6.2 The Optical Design Concept of LED Road Lighting
126(5)
6.2.1 Illuminance
127(1)
6.2.2 Luminance
128(1)
6.2.3 Glare Restriction Threshold Increment
129(1)
6.2.4 Surrounding Ratio
130(1)
6.3 Discontinuous Freeform Lenses (DFLs) for LED Road Lighting
131(23)
6.3.1 Design of DFLs for Rectangular Radiation Patterns
131(3)
6.3.1.1 Step
1. Optical Modeling for an LED
131(2)
6.3.1.2 Step
2. Freeform Lens Design
133(1)
6.3.2 Simulation Illumination Performance and Tolerance Analyses
134(5)
6.3.3 Experimental Analyses
139(1)
6.3.4 Effects of Manufacturing Defects on the Lighting Performance
139(13)
6.3.4.1 Surface Morphology
144(2)
6.3.4.2 Optical Performance Testing
146(4)
6.3.4.3 Analysis and Discussion
150(2)
6.3.5 Case Study-LED Road Lamps Based on DFLs
152(2)
6.4 Continuous Freeform Lens (CFL) for LED Road Lighting
154(10)
6.4.1 CFL Based on the Radiate Grid Mapping Method
154(1)
6.4.2 CFL Based on the Rectangular Grid Mapping Method
154(4)
6.4.3 Spatial Color Uniformity Analyses of a Continuous Freeform Lens
158(6)
6.5 Freeform Lens for an LED Road Lamp with Uniform Luminance
164(10)
6.5.1 Problem Statement
164(2)
6.5.2 Combined Design Method for Uniform Luminance in Road Lighting
166(5)
6.5.3 Freeform Lens Design Method for Uniform-Luminance Road Lighting
171(3)
6.6 Asymmetrical CFLs with a High Light Energy Utilization Ratio
174(4)
6.7 Modularized LED Road Lamp Based on Freeform Optics
178(1)
References
178(3)
7 Freeform Optics for a Direct-Lit LED Backlighting Unit 181(50)
7.1 Introduction
181(2)
7.2 Optical Design Concept of a Direct-Lit LED BLU
183(3)
7.3 Freeform Optics for Uniform Illumination with a Large DHR
186(5)
7.4 Freeform Optics for Uniform Illumination with an Extended Source
191(12)
7.4.1 Algorithm of a Freeform Lens for Uniform Illumination with an Extended Source
194(1)
7.4.2 Design Method of a Freeform Lens for Extended Source Uniform Illumination
195(3)
7.4.2.1 Step
1. Calculation of FORS
196(1)
7.4.2.2 Step
2. Energy Grids Division for an Extended Source
197(1)
7.4.2.3 Step
3. Construction of a Freeform Lens for an Extended Source
198(1)
7.4.2.4 Step
4. Ray-Tracing Simulation and Circulation Feedback Optimization
198(1)
7.4.3 Freeform Lenses for Direct-Lit BLUs with an Extended Source
198(5)
7.5 Petal-Shaped Freeform Optics for High-System-Efficiency LED BLUs
203(7)
7.5.1 Optical Co-design from the System Level of BLUs
203(1)
7.5.2 Optimization of a High-Efficiency LIDC for BEFs
203(3)
7.5.3 Petal-Shaped Freeform Lenses, and ASLPs for High-Efficiency BLUs
206(4)
7.6 BEF-Adaptive Freeform Optics for High-System-Efficiency LED BLUs
210(9)
7.6.1 Design Concept and Method
210(3)
7.6.1.1 Step
1. Finding Out the Best Incident Angle Range
211(1)
7.6.1.2 Step
2. Redistribution of Original Output LIDC
212(1)
7.6.1.3 Step
3. Construction of a BEF-Adaptive Lens
213(1)
7.6.2 BEF-Adaptive Lens Design Case
213(6)
7.6.2.1 Basic Setup of a BLU
213(1)
7.6.2.2 Design Results and Optical Validation
214(5)
7.7 Freeform Optics for Uniform Illumination with Large DHR, Extended Source and Near Field
219(9)
7.7.1 Design Method
220(3)
7.7.1.1 IDF of Single Extended Source
220(1)
7.7.1.2 IDF of Freeform Lens
221(1)
7.7.1.3 Construction of Freeform Lens
222(1)
7.7.1.4 Ray Tracing Simulation and Verification
223(1)
7.7.2 Design Example
223(5)
References
228(3)
8 Freeform Optics for LED Automotive Headlamps 231(38)
8.1 Introduction
231(1)
8.2 Optical Regulations of Low-Beam and High-Beam Light
231(3)
8.2.1 Low-Beam
231(1)
8.2.2 High-Beam
232(1)
8.2.3 Color Range
232(2)
8.3 Application-Specific LED Packaging for Headlamps
234(5)
8.3.1 Small Etendue
234(1)
8.3.2 High Luminance
235(1)
8.3.3 Strip Shape Emitter with a Sharp Cutoff
236(1)
8.3.4 Small Thermal Resistance of Packaging
236(1)
8.3.5 ASLP Design Case
236(2)
8.3.6 Types of LED Packaging Modules for Headlamps
238(1)
8.4 Freeform Lens for High-Efficiency LED Headlamps
239(11)
8.4.1 Introduction
239(1)
8.4.2 Freeform Lens Design Methods
239(4)
8.4.2.1 Design of Collection Optics
240(1)
8.4.2.2 Design of Refraction Optics
241(2)
8.4.3 Design Case of a Freeform Lens for Low-Beam and High-Beam
243(6)
8.4.3.1 Design of a Low-Beam Lens
244(2)
8.4.3.2 Design of a High-Beam Lens
246(3)
8.4.4 Design Case of a Freeform Lens for a Low-Beam Headlamp Module
249(1)
8.5 Freeform Optics Integrated PES for an LED Headlamp
250(5)
8.6 Freeform Optics Integrated MR for an LED Headlamp
255(3)
8.7 LED Headlamps Based on Both PES and MR Reflectors
258(4)
8.8 LED Module Integrated with Low-Beam and High-Beam
262(4)
References
266(3)
9 Freeform Optics for Emerging LED Applications 269(38)
9.1 Introduction
269(1)
9.2 Total Internal Reflection (TIR)-Freeform Lens for an LED Pico-Projector
269(14)
9.2.1 Introduction
269(2)
9.2.2 Problem Statement
271(2)
9.2.2.1 Defect of a Refracting Freeform Surface for Illumination with a Small Output Angle
271(1)
9.2.2.2 Problem of an Extended Light Source
272(1)
9.2.3 Integral Freeform Illumination Lens Design Based on an LED's Light Source
273(6)
9.2.3.1 Freeform TIR Lens Design
273(1)
9.2.3.2 Top Surface Design of the TIR Lens
273(6)
9.2.4 Optimization of the Integral Freeform Illumination Lens
279(1)
9.2.5 Tolerance analysis
280(1)
9.2.6 LED Pico-Projector Based on the Designed Freeform Lens
281(2)
9.3 Freeform Lens Array Optical System for an LED Stage Light
283(7)
9.3.1 Design of a One-Dimensional Beam Expander Based on a Freeform Lens Array
285(2)
9.3.1.1 Part
1. Gridding of the One-Dimensional Target Plane
285(1)
9.3.1.2 Part
2. Algorithm of a One-Dimensional Freeform Microstructure
285(2)
9.3.1.3 Part
3. Optical Simulation Results of the Optical System
287(1)
9.3.2 Design of a Rectangular Beam Expander Based on a Freeform Lens Array
287(3)
9.3.2.1 Part
1. Algorithm of the Rectangular Freeform Structure
288(2)
9.3.2.2 Part
2. Optical Simulation Results of the Optical System
290(1)
9.4 Freeform Optics for a LED Airport Taxiway Light
290(7)
9.4.1 Introduction
290(1)
9.4.2 Requirement Statement
291(1)
9.4.3 Design Method of an Optical System
291(2)
9.4.4 Simulation and Optimization
293(1)
9.4.5 Tolerance Analysis
294(1)
9.4.6 Design of an LED Taxiway Centerline Lamp
295(2)
9.5 Freeform Optics for LED Searchlights
297(8)
9.5.1 Introduction
297(1)
9.5.2 Freeform Lens Design of a Small Divergence Angle
298(3)
9.5.3 Improving Methods and Tolerance Analysis
301(8)
9.5.3.1 The Design of a Freeform Lens and Parabolic Reflector
301(3)
9.5.3.2 Tolerance Analysis
304(1)
References
305(2)
10 Freeform Optics for LED Lighting with High Spatial Color Uniformity 307(28)
10.1 Introduction
307(1)
10.2 Optical Design Concept
308(1)
10.3 Freeform Lens Integrated LED Module with a High SCU
309(14)
10.3.1 Optical Design, Molding, and Simulation
309(3)
10.3.2 Tolerance Analyses
312(1)
10.3.3 Secondary Freeform Lens for a High SCU
313(1)
10.3.4 Experimental Analyses
314(9)
10.4 TIR-Freeform Lens Integrated LED Module with a High SCU
323(9)
10.4.1 Introduction
323(2)
10.4.2 Design Principle for a High SCU
325(1)
10.4.3 Design Method of the Modified TIR-Freeform Lens
325(3)
10.4.4 Optimization Results and Discussions
328(4)
References
332(3)
Appendix: Codes of Basic Algorithms of Freeform Optics for LED Lighting 335(16)
Index 351
Kai Wang, Ph.D., Southern University of Science and Technology, Guangdong, China

Sheng Liu, Ph.D., Wuhan University, Hubei, China

Xiaobing Luo, Huazhong University of Science and Technology, Hubei, China

Dan Wu, Ph.D., Nanyang Technological University, Singapore