Muutke küpsiste eelistusi

E-raamat: From Bessel To Multi-index Mittag-leffler Functions: Enumerable Families, Series In Them And Convergence

(Technical Univ Of Sofia, Bulgaria)
  • Formaat: 228 pages
  • Ilmumisaeg: 25-Aug-2016
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786340900
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 79,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 228 pages
  • Ilmumisaeg: 25-Aug-2016
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786340900
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Bessel and Mittag–Leffler functions are prominent within mathematical and scientific fields due to increasing interest in non-conventional models within applied mathematics. Since the analytical solutions of many differential and integral equations of arbitrary order can be written as series of special functions of fractional calculus, they are now unavoidable tools for handling various mathematical models of integer or fractional order. From Bessel to Multi-Index Mittag–Leffler Functions analyses this through the study of enumerable families of different classes of special functions.Enumerable families are considered and the convergence of series is investigated. Providing a unified approach to the classical power series, analogues of the classical results for the power series are obtained, and the conclusion is that each of the considered series has a similar convergence behaviour to a power series. Also studied are various properties of the Bessel and Mittag–Leffler functions and their generalizations, including estimations, asymptotic formulae, fractional differentiation and integration operators.
Preface vii
Acknowledgments xi
Introduction xiii
1 Bessel and Associated Functions
1(8)
1.1 Bessel Functions
1(1)
1.2 Modified Bessel Functions
2(2)
1.3 Neumann Polynomials
4(1)
1.4 Integral Representations and Asymptotic Formulae
5(4)
1.4.1 Preliminary results
5(1)
1.4.2 An upper estimate
6(3)
2 Generating Functions of Bessel and Associated Bessel Functions
9(10)
2.1 Generating Functions of Bessel Functions of the First Kind
9(2)
2.2 Generating Functions of Bessel Functions of the Third Kind with Half-Integer Indices
11(6)
2.3 Generating Functions of the Neumann Polynomials
17(2)
3 Convergence of Series in Bessel Functions
19(32)
3.1 Some Sets in the Complex Plane, Denotations and One Useful Geometric Inequality
19(2)
3.2 Classical Results for the Power Series
21(5)
3.3 Series in Bessel Functions
26(1)
3.4 Cauchy--Hadamard Type Theorem
27(3)
3.5 Abel Type Theorem
30(4)
3.6 (J, z0)-Summation
34(1)
3.7 Tauber Type Theorem
35(3)
3.8 Fatou Type Theorem
38(6)
3.9 Overconvergence Theorems
44(7)
4 Bessel and Neumann Expansions
51(16)
4.1 Neumann Series in the Complex Plane
51(1)
4.2 Cauchy--Hadamard Type Theorem
52(1)
4.3 Laurent Type Theorem
52(4)
4.4 Classical Results Related to Singularities and Analytical Continuation of Holomorphic Functions
56(3)
4.5 Relation between the Main Stars of f(z), g(z) and g(z)
59(3)
4.6 Pringsheim's Type Theorem and Vivanti--Dienes Type Theorem
62(5)
5 The Completeness of Systems of Bessel and Associated Bessel Functions in Spaces of Holomorphic Functions
67(26)
5.1 The Completeness of Systems of Holomorphic Functions
67(4)
5.2 Auxiliary Statements about the Generating Function of Bessel Functions of the First Kind
71(4)
5.3 Theorems about the Completeness for Bessel Functions Systems of the First Kind
75(3)
5.4 Auxiliary Statements about the Generating Function of Modified Bessel Functions of Third Kind
78(5)
5.5 Theorems about the Completeness for Modified Bessel Functions Systems of Third Kind
83(3)
5.6 Auxiliary Statements about the Generating Function of Neumann Polynomials
86(3)
5.7 Theorems about Completeness for Neumann Polynomials Systems
89(4)
6 Multi-index Bessel Functions
93(24)
6.1 Multi-index Generalizations of Bessel Functions of the First Kind
93(4)
6.2 Results on the Parameters of the Multi-index Generalizations of Bessel Functions
97(4)
6.3 Inequalities Related to the Generalizations of the Bessel Functions
101(10)
6.4 Asymptotic Formulae with Respect to the Index n
111(3)
6.5 Special Cases
114(1)
6.6 Asymptotics for Lommel and Struve Functions
114(3)
7 Mittag-Leffler Type Functions
117(14)
7.1 Mittag-Leffler Functions
117(3)
7.2 Inequalities Related to the Mittag-Leffler Functions
120(1)
7.3 Generalized Mittag-Leffler Functions
121(2)
7.4 Results on the Parameters of the Generalized Mittag-Leffler Functions
123(3)
7.5 Inequalities Related to the Generalized Mittag-Leffler Functions
126(2)
7.6 Asymptotic Formulae with Respect to the Index n
128(3)
8 Latest Generalizations of Both the Bessel and Mittag-Leffler Type Functions
131(30)
8.1 Multi-index Mittag-Leffler Functions
131(2)
8.2 Results Related to the Parameters of the Multi-index Mittag-Leffler Functions
133(2)
8.3 Inequalities and Asymptotic Formulae for `Large Values' of the Parameters μ
135(5)
8.4 Definition and Basic Properties of the Multi-index (3m-parametric) Mittag-Leffler Functions
140(3)
8.5 Fox's and Wright's Functions
143(2)
8.6 The 3m-parametric Multi-index Mittag-Leffler Functions as Fox's and Wright's Functions
145(4)
8.7 Special Cases of the Multi-index Mittag-Leffler Functions
149(3)
8.8 Fractional Riemann--Liouville Integral and Derivative
152(3)
8.9 Generalized Fractional Erdelyi--Kober Integrals and Derivatives
155(6)
9 Series in Mittag-Leffler Type Functions
161(30)
9.1 Multi-index Bessel Series: Theorems of Cauchy--Hadamard and Abel Types
161(3)
9.2 Tauberian and Fatou Type Theorems for Bessel Type Series
164(9)
9.3 Mittag-Leffler and Generalized Mittag-Leffler Series: Cauchy--Hadamard and Abel Type Theorems
173(3)
9.4 Tauberian and Fatou Type Theorems for Mittag-Leffler Type Series
176(4)
9.5 Multi-index Mittag-Leffler Series: Cauchy--Hadamard and Abel Type Theorems
180(3)
9.6 Tauberian and Fatou Type Theorems for Multi-index Mittag-Leffler Series
183(2)
9.7 Overconvergence of Bessel Type Series
185(1)
9.8 Overconvergence of Mittag-Leffler Type Series
186(1)
9.9 Conclusions
187(4)
Bibliography 191(10)
Index 201