Muutke küpsiste eelistusi

E-raamat: From Polynomials to Sums of Squares

(University of York, UK)
  • Formaat: 194 pages
  • Ilmumisaeg: 09-May-2023
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000948783
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 90,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 194 pages
  • Ilmumisaeg: 09-May-2023
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000948783
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

From Polynomials to Sums of Squares describes a journey through the foothills of algebra and number theory based around the central theme of factorization. The book begins by providing basic knowledge of rational polynomials, then gradually introduces other integral domains, and eventually arrives at sums of squares of integers. The text is complemented with illustrations that feature specific examples. Other than familiarity with complex numbers and some elementary number theory, very little mathematical prerequisites are needed. The accompanying disk enables readers to explore the subject further by removing the tedium of doing calculations by hand. Throughout the text there are practical activities involving the computer.
Preface -- 1 Polynomials in one variable -- 1.1 Polynomials with
rational coefficients -- 1.2 Polynomials with coefficients in Zp -- 1.3
Polynomial division -- 1.4 Common divisors of polynomials -- 1.5 Units,
irreducibles and the factor theorem -- 1.6 Factorization into irreducible
polynomials -- 1.7 Polynomials with integer coefficients -- 1.8 Factorization
in Zp [ x] and applications to Z[ x] -- 1.9 Factorization in Q[ x] -- 1.10
Factorizing with the aid of the computer -- Summary of chapter 1 -- Exercises
for chapter 1 -- 2 Using polynomials to make new number fields -- 2.1 Roots
of irreducible polynomials -- 2.2 The splitting field of xP" - x in Zp [ x] --
Summary of chapter 2 -- Exercises for chapter 2 -- 3 Quadratic integers in
general and Gaussian integers in particular -- 3.1 Algebraic numbers -- 3.2
Algebraic integers -- 3.3 Quadratic numbers and quadratic integers -- 3.4 The
integers of Q(-J=T) -- 3.5 Division with remainder in Z[ i] -- 3.6 Prime and
composite integers in Z[ i] -- Summary of chapter 3 -- Exercises for chapter 3
-- 4 Arithmetic in quadratic domains -- 4.1 Multiplicative norms -- 4.2
Application of norms to units in quadratic domains -- 4.3 Irreducible and
prime quadratic integers -- 4.4 Euclidean domains of quadratic integers --
4.5 Factorization into irreducible integers in quadratic -- domains --
Summary of chapter 4 -- Exercises for chapter 4 -- 5 Composite rational
integers and sums of squares -- 5.1 Rational primes -- 5.2 Quadratic residues
and the Legendre symbol -- 5.3 Identifying the rational primes that become
composite in a quadratic domain -- 5.4 Sums of squares -- Summary of chapter
5 -- Exercises for chapter 5 -- Appendices -- 1 Abstract perspectives -- 1.1
Groups -- 1.2 Rings and integral domains -- 1.3 Divisibility in integral
domains -- 1.4 Euclidean domains and factorization into irreducibles -- 1.5
Unique factorization in Euclidean domains -- 1.6 Integral domains and fields
-- 1.7 Finite fields -- 2 The product of primitive polynomials -- 3 The
Mobius function and cyclotomic polynomials -- 4 Rouches theorem -- 5
Dirichlet's theorem and Pell's equation -- 6 Quadratic reciprocity --
References Index.
Jackson, T.H