Muutke küpsiste eelistusi

E-raamat: Frontiers In Approximation Theory

(The University Of Memphis, Usa)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 40,95 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Anastassiou describes his work over the past five years in approximation theory in self-contained chapters that could be used in advanced courses. He covers fractional monotone approximation theory, approximation by discrete singular operators of Favard style, approximation by interpolating operators induced by neural networks, and approximation theory and functional analysis on time scales. Specific topics include right fractional monotone approximation theory, spline left fractional monotone approximation theory using left fractional differential operators, lower order fractional monotone approximation theory, and discrete approximation by Gauss-Weierstrass and Picard type operators. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com)

This monograph presents the author's work of the last five years in approximation theory. The chapters are self-contained and can be read independently. Readers will find the topics covered are diverse and advanced courses can be taught out of this book.

The first part of the book is dedicated to fractional monotone approximation theory introduced for the first time by the author, taking the related ordinary theory of usual differentiation at the fractional differentiation level with polynomials and splines as approximators. The second part deals with the approximation by discrete singular operators of the Favard style, for example, of the Picard and GaussWeierstrass types. Then, it continues in a very detailed and extensive chapter on approximation by interpolating operators induced by neural networks, a connection to computer science. This book ends with the approximation theory and functional analysis on time scales, a very modern topic, detailing all the pros and cons of this method.

The results in this book are expected to find applications in many areas of pure and applied mathematics. So far, very little is written about fractional approximation theory which is at its infancy. As such, it is suitable for researchers, graduate students, and performing seminars as well as an invaluable resource for all science libraries.

Contents:
  • Fractional Monotone Approximation
  • Right Fractional Monotone Approximation Theory
  • Univariate Left Fractional Polynomial High Order Monotone Approximation Theory
  • Univariate Right Fractional Polynomial High Order Monotone Approximation Theory
  • Spline Left Fractional Monotone Approximation Theory Using Left Fractional Differential Operators
  • Spline Right Fractional Monotone Approximation Theory Using Right Fractional Differential Operators
  • Complete Fractional Monotone Approximation Theory
  • Lower Order Fractional Monotone Approximation Theory
  • Approximation Theory by Discrete Singular Operators
  • On Discrete Approximation by GaussWeierstrass and Picard Type Operators
  • Approximation Theory by Interpolating Neural Networks
  • Approximation and Functional Analysis Over Time Scales

Readership: Graduate students and researchers in approximation theory.
Key Features:
  • Presents new research in approximation theory
  • An extensive list of references is given in every chapter
  • It is about fractional approximation, neural networks and singular integrals approximations
  • Important to applications in applied mathematics
Preface vii
1 Fractional Monotone Approximation
1(10)
1.1 Introduction
1(1)
1.2 Main Result
2(9)
Bibliography
9(2)
2 Right Fractional Monotone Approximation Theory
11(10)
2.1 Introduction
11(1)
2.2 Main Result
12(9)
Bibliography
19(2)
3 Univariate Left Fractional Polynomial High Order Monotone Approximation Theory
21(12)
3.1 Introduction
21(2)
3.2 Main Result
23(10)
Bibliography
31(2)
4 Univariate Right Fractional Polynomial High Order Monotone Approximation Theory
33(12)
4.1 Introduction
33(2)
4.2 Main Result
35(10)
Bibliography
43(2)
5 Spline Left Fractional Monotone Approximation Theory Using Left Fractional Differential Operators
45(10)
5.1 Introduction
45(2)
5.2 Main Result
47(8)
Bibliography
53(2)
6 Spline Right Fractional Monotone Approximation Theory Using Right Fractional Differential Operators
55(10)
6.1 Introduction
55(2)
6.2 Main Result
57(8)
Bibliography
63(2)
7 Complete Fractional Monotone Approximation Theory
65(20)
7.1 Introduction
65(3)
7.2 Main Result
68(17)
Bibliography
83(2)
8 Lower Order Fractional Monotone Approximation Theory
85(10)
8.1 Introduction
85(3)
8.2 Main Results
88(7)
Bibliography
93(2)
9 Approximation Theory by Discrete Singular Operators
95(18)
9.1 Preliminaries
95(1)
9.2 Main Results
96(17)
Bibliography
111(2)
10 On Discrete Approximation by Gauss-Weierstrass and Picard Type Operators
113(10)
10.1 Preliminaries
113(1)
10.2 Main Results
114(9)
Bibliography
121(2)
11 Approximation Theory by Interpolating Neural Networks
123(66)
11.1 Introduction
123(3)
11.2 Main Results
126(63)
11.2.1 Neural Networks: Univariate Theory of Interpolation and Approximation
126(17)
11.2.2 Neural Networks: Multivariate Theory of Interpolation and Approximation
143(12)
11.2.3 Neural Networks Iterated Approximation and Interpolation
155(3)
11.2.4 Complex Multivariate Neural Network Approximation and Interpolation
158(1)
11.2.5 Fuzzy Fractional Mathematical Analysis Background
159(7)
11.2.6 Fuzzy and Fuzzy-Fractional Univariate Neural Network Approximation and Interpolation
166(7)
11.2.7 Multivariate Fuzzy Analysis Background
173(2)
11.2.8 Multivariate Fuzzy Neural Network Approximation and Interpolation
175(3)
11.2.9 Fuzzy-Random Analysis Background
178(4)
11.2.10 Multivariate Fuzzy Random Neural Network Approximation and Interpolation
182(3)
Bibliography
185(4)
12 Approximation and Functional Analysis over Time Scales
189(26)
12.1 Introduction
189(2)
12.2 Time Scales Basics (See [ 5])
191(3)
12.3 More on Riemann-Stieltjes Integral on Time Scales
194(5)
12.4 Approximation Basics on Time Scales
199(5)
12.5 Approximation on Time Scales
204(11)
Bibliography
213(2)
Index 215