Muutke küpsiste eelistusi

E-raamat: Frontiers in Data Science

Edited by , Edited by (UMIT, Hall in Tirol, Austria)
  • Formaat - EPUB+DRM
  • Hind: 58,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Frontiers in Data Science deals with philosophical and practical results in Data Science. A broad definition of Data Science describes the process of analyzing data to transform data into insights. This also involves asking philosophical, legal and social questions in the context of data generation and analysis. In fact, Big Data also belongs to this universe as it comprises data gathering, data fusion and analysis when it comes to manage big data sets. A major goal of this book is to understand data science as a new scientific discipline rather than the practical aspects of data analysis alone.
About the Editors vii
Contributors ix
1 Legal aspects of information science, data science, and Big Data
1(46)
Alessandro Mantelero
Giuseppe Vaciago
2 Legal and policy aspects of information science in emerging automated environments
47(22)
Stefan A. Kaiser
3 Privacy as secondary rule, or the intrinsic limits of legal orders in the age of Big Data
69(42)
Bart van der Sloot
4 Data ownership: Taking stock and mapping the issues
111(36)
Florent Thouvenin
Rolf H. Weber
Alfred Fruh
5 Philosophical and methodological foundations of text data analytics
147(24)
Beth-Anne Schuelke-Leech
Betsy Barry
6 Mobile commerce and the consumer information paradox: A review of practice, theory, and a research agenda
171(20)
Matthew S. Eastin
Nancy H. Brinson
7 The impact of Big Data on making evidence-based decisions
191(32)
Rodica Neamtu
Caitlin Kuhlman
Ramoza Ahsan
Elke Rundensteiner
8 Automated business analytics for artificial intelligence in Big Data@X 4.0 era
223(30)
Yi-Ting Chen
Edward W. Sun
9 The evolution of recommender systems: From the beginning to the Big Data era
253(32)
Beatrice Paoli
Monika Laner
Beat Todtli
Jouri Semenov
10 Preprocessing in Big Data: New challenges for discretization and feature selection
285(44)
Veronica Bolon-Canedo
Noelia Sanchez-Marono
Amparo Alonso-Betanzos
11 Causation, probability, and all that: Data science as a novel inductive paradigm
329(26)
Wolfgang Pietsch
12 Big Data in healthcare in China: Applications, obstacles, and suggestions
355(16)
Zhong Wang
Xiaohua Wang
Index 371
Matthias Dehmer studied mathematics at the University of Siegen (Germany) and received his Ph.D. in computer science from the Technical University of Darmstadt (Germany). Afterwards, he was a research fellow at Vienna Bio Center (Austria), Vienna University of Technology, and University of Coimbra (Portugal). He obtained his habilitation in applied discrete mathematics from the Vienna University of Technology. Currently, he is Professor at UMIT - The Health and Life Sciences University (Austria) and also has a post at Bundeswehr Universit¨at M¨unchen (Germany). His research interests are in Data Science, Big Data, Complex Networks, Machine Learning and Information Theory. In particular, he is also working on machine learning-based methods to design new data analysis methods for solving problems in computational biology. He has more than 205 publications in applied mathematics, computer science and related disciplines.

Frank Emmert-Streib studied physics at the University of Siegen, Germany, gaining his PhD in theoretical physics from the University of Bremen. He was a postdoctoral fellow in the USA before becoming a Faculty member at the Center for Cancer Research at the Queens University Belfast (UK). Currently, he is a Professor at Tampere University Technology, Finland, in the Department of Signal Processing. His research interests are in the field of computational biology, data science and analytics in the development and application of methods from statistics and machine learning for the analysis of big data from genomics, finance and business.