Muutke küpsiste eelistusi

E-raamat: Functional Algebra and Hypercalculus in Infinite Dimensions: Hyperintegrals, Hyperfunctionals and Hyperderivatives

  • Formaat: 481 pages
  • Ilmumisaeg: 01-Sep-2017
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781536124422
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 339,62 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 481 pages
  • Ilmumisaeg: 01-Sep-2017
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781536124422
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The theory of hypernumbers and extrafunctions is further development in distribution theory inspired by contemporary physics and influenced by problems in mathematical physics. It makes more functions differentiable and provides new kinds of derivatives and hyperderivatives aimed at solving more differential and operator equations than ever before possible.In the book, extrafunctions are extended to hyperfunctionals and hyperoperators in infinite-dimensional vector spaces. Due to its development, many problems in contemporary physics, as well as in modern linear and nonlinear analysis have an infinite-dimensional nature, and the infinite-dimensional theory of extrafunctions, hyperfunctionals and hyperoperators provides new tools for solving many of these problems.The book describes new mathematical structures such as hyperderivatives and hyperintegrals of real and complex functions, hyperprobability and hyperexpectation of random processes and some others, essentially increasing power of functional analysis and probability applications. It presents the key parts of calculus - number systems, function spaces, the differential calculus and the integral calculus - in the setting of hypernumbers, extrafunctions, hyperfunctionals and hyperoperators in finite-dimensional and infinite-dimensional vector spaces. In addition, functional algebra, which employs algebraic operations with extrafunctions, hyperfunctionals and hyperoperators is developed. New relations between hyperdifferentiation and continuity of functions and operators are explicated. As differentiation and integration are special cases of hyperdifferentiation and hyperintegration, respectively, hypercalculus includes calculus as its part or subtheory.It is possible to use this book for enhancing traditional courses of calculus for undergraduates, as well as for teaching separate courses for graduate and undergraduate students at colleges and universities. To achieve these goals, exposition in the book goes from simple topics to more and more advanced topics, while proof of some statements are left as exercises for the students.
Preface vii
Chapter 1 Introduction: Challenges of Infinity
1(32)
Chapter 2 Hypernumbers over Normed Fields
33(54)
Chapter 3 Hyperfunctionals and Hyperoperators as Extrafunctions
87(42)
Chapter 4 Hyperdifferentiation as a Hyperoperator
129(126)
Chapter 5 Hyperintegration as a Hyperfunctional
255(76)
Chapter 6 Hyperprobability as a Comprehensive Characteristic of Random Phenomena
331(68)
Chapter 7 Conclusion: New Opportunities
399(10)
Appendix: Notation and Rudimentary Constructions 409(16)
References 425(38)
Index 463