Muutke küpsiste eelistusi

E-raamat: Functional Analysis, Harmonic Analysis, and Image Processing

Edited by , Edited by
  • Formaat: 411 pages
  • Sari: Contemporary Mathematics
  • Ilmumisaeg: 01-Jul-2017
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470441661
  • Formaat - PDF+DRM
  • Hind: 147,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 411 pages
  • Sari: Contemporary Mathematics
  • Ilmumisaeg: 01-Jul-2017
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470441661

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume is dedicated to the memory of Bjorn Jawerth. It contains original research contributions and surveys in several of the areas of mathematics to which Bjorn made important contributions. Those areas include harmonic analysis, image processing, and functional analysis, which are of course interrelated in many significant and productive ways.

Among the contributors are some of the world's leading experts in these areas. With its combination of research papers and surveys, this book may become an important reference and research tool.

This book should be of interest to advanced graduate students and professional researchers in the areas of functional analysis, harmonic analysis, image processing, and approximation theory. It combines articles presenting new research with insightful surveys written by foremost experts.
M. Cwikel, M. Frazier, L. M. Jawerth, and M. Milman, Bjorn David Jawerth
(1952-2013)
S. V. Astashkin and K. V. Lykov, Jawerth-Milman extrapolation theory: Some
recent developments with applications
J. J. Benedetto and M. Dellatorre, Uncertainty principles and weighted norm
inequalities
A. Benyi and R. H. Torres, The discrete Calderon reproducing formula of
Frazier and Jawerth
H.-Q. Bui and T. Candy, A characterisation of the Besov-Lipschitz and
Triebel-Lizorkin spaces using Poisson like kernels
C. Cabrelli, C. A. Mosquera, and V. Paternostro, An approximation problem in
multiplicatively invariant spaces
G. Cleanthous, A. G. Georgiadis, and M. Nielsen, Discrete decomposition of
homogeneous mixed-norm Besov spaces
H. G. Feichtinger and F. Voigtlaender, From Frazier-Jawerth characterizations
of Besov spaces to wavelets and decomposition spaces
M. Frazier and S. Roudenko, Traces and extensions of weighted Sobolev and
potential spaces
D. D. Haroske and L. Skrzypczak, Compact embeddings of weighted smoothness
spaces of Morrey type: An example
L. M. Jawerth and D. A. Weitz, Tracking the structural deformation of a
sheared biopolymer network
L. Lempert, Extrapolation, a technique to estimate
A. K. Lerner, On a dual property of the maximal operator on weighted variable
$L^p$ spaces
R. Rochberg, Is the Dirichlet space a quotient of $DA_n$?
W. Abu-Shammala, J.-L. Shiu, and A. Torchinsky, Characterizations of the
Hardy space $H^1(\mathbb{R})$ and BMO$(\mathbb{R})$
C. Tintarev, Four proofs of cocompactness for Sobolev embeddings
H. Triebel, Tempered homogeneous function spaces, II
V. K. Nguyen and W. Sickel, Isotropic and dominating mixed Besov spaces: A
comparison
S. Voronin and I. Daubechies, An iteratively reweighted least squares
algorithm for sparse regularization.
Michael Cwikel, Technion-Israel Institute of Technology, Haifa, Israel.

Mario Milman, Instituto Argentino de Matematica, Buenos Aires, Argentina.