Muutke küpsiste eelistusi

E-raamat: Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 28-Feb-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031275371
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 28-Feb-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031275371
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook provides an introduction to functional analysis suitable for lecture courses to final year undergraduates or beginning graduates.

Starting from the very basics of metric spaces, the book adopts a self-contained approach to Banach spaces and operator theory that covers the main topics, including the spectral theorem, the Gelfand transform, and Banach algebras. Various applications, such as least squares approximation, inverse problems, and Tikhonov regularization, illustrate the theory. Over 1000 worked examples and exercises of varying difficulty present the reader with ample material for reflection.

This new edition of Functional Analysis has been completely revised and corrected, with many passages rewritten for clarity, numerous arguments simplified, and a good amount of new material added, including new examples and exercises. The prerequisites, however, remain the same with only knowledge of linear algebra and real analysis of a single variable assumed of the reader.

Arvustused

This is a book for the bookshelf! It covers a wide range of important theory, the exposition is clear, there are barely any typos, and one gets this nice feeling that the author knows what he is talking about and has an honest wish that the reader should learn and understand. (Olav Nygaard, zbMATH 1546.46001, 2024)

1 Introduction.- Part I: Metric Spaces.- 2 Distance.- 3 Convergence and Continuity.- 4 Completeness and Separability.- 5 Connectedness.- 6 Compactness.- Part II: Banach and Hilbert Spaces.- 7 Normed Spaces.- 8 Continuous Linear Maps.- 9 The Classical Spaces.- 10 Hilbert Spaces.- 11 Banach Spaces.- 12 Differentiation and Integration.- Part III: Banach Algebras.- 13 Banach Algebras.- 14 Spectral Theory.- 15 C*-Algebras.
Professor Joseph Muscat graduated from the University of Oxford and obtained his Ph.D. from Princeton University with a thesis on the MaxwellKleinGordon equation on curved space-time. He has written several papers on the applications of functional analysis to inverse problems in the biomedical field and is a co-author of the novel ACSP method in EEG signal processing.