Muutke küpsiste eelistusi

E-raamat: Functional Analysis of Quantum Information Theory: A Collection of Notes Based on Lectures by Gilles Pisier, K. R. Parthasarathy, Vern Paulsen and Andreas Winter

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 902
  • Ilmumisaeg: 28-May-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319167183
  • Formaat - PDF+DRM
  • Hind: 49,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 902
  • Ilmumisaeg: 28-May-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319167183

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides readers with a concise introduction to current studies on operator-algebras and their generalizations, operator spaces and operator systems, with a special focus on their application in quantum information science. This basic framework for the mathematical formulation of quantum information can be traced back to the mathematical work of John von Neumann, one of the pioneers of operator algebras, which forms the underpinning of most current mathematical treatments of the quantum theory, besides being one of the most dynamic areas of twentieth century functional analysis. Today, von Neumann’s foresight finds expression in the rapidly growing field of quantum information theory. These notes gather the content of lectures given by a very distinguished group of mathematicians and quantum information theorists, held at the IMSc in Chennai some years ago, and great care has been taken to present the material as a primer on the subject matter. Starting from the basic definitions of operator spaces and operator systems, this text proceeds to discuss several important theorems including Stinespring’s dilation theorem for completely positive maps and Kirchberg’s theorem on tensor products of C*-algebras. It also takes a closer look at the abstract characterization of operator systems and, motivated by the requirements of different tensor products in quantum information theory, the theory of tensor products in operator systems is discussed in detail. On the quantum information side, the book offers a rigorous treatment of quantifying entanglement in bipartite quantum systems, and moves on to review four different areas in which ideas from the theory of operator systems and operator algebras play a natural role: the issue of zero-error communication over quantum channels, the strong subadditivity property of quantum entropy, the different norms on quantum states and the corresponding induced norms on quantum channels, and, lastly, the applications of matrix-valued random variables in the quantum information setting.

Arvustused

This volume is a collection of notes from a two-week workshop . the contributions from the four workshop speakers are quite well written and the editors have achieved a high level of consistency in style and terminology. This collection will be of interest to researchers in physics, mathematics, and theoretical computer science. (Kevin J. Compton, Mathematical Reviews, January, 2016)

1 Operator Spaces
1(38)
1.1 Operator Spaces
1(17)
1.1.1 Completely Bounded and Completely Positive Maps
2(1)
1.1.2 Operator Systems
2(1)
1.1.3 Fundamental Factorisation of CB Maps
3(15)
1.2 More on CB and CP Maps
18(9)
1.3 Ruan's Theorem and Its Applications
27(4)
1.3.1 Ruan's Theorem
27(2)
1.3.2 Some Applications and Some Basic Facts
29(1)
1.3.3 Min and max Operator Space Structures on a Banach Space
30(1)
1.4 Tensor Products of Operator Spaces
31(3)
1.4.1 Injective Tensor Product
31(1)
1.4.2 Projective Tensor Product
32(1)
1.4.3 General Remarks
33(1)
1.4.4 A Passing Remark on the Haagerup Tensor Product
34(1)
1.5 Tensor Products of C*-Algebras
34(5)
1.5.1 Min and max Tensor Products of C*-Algebras
34(1)
1.5.2 Kirchberg's Theorem
35(2)
References
37(2)
2 Entanglement in Bipartite Quantum States
39(24)
2.1 Quantum States, Observables and Probabilities
39(3)
2.2 Entanglement
42(6)
2.2.1 Schmidt Decomposition
43(3)
2.2.2 Unitary Bases, EPR States and Dense Coding
46(2)
2.3 Schmidt Rank of Bipartite Entangled States
48(4)
2.3.1 Subspaces of Minimal Schmidt Rank
48(4)
2.4 Schmidt Number of Mixed States
52(11)
2.4.1 Test for Schmidt Number k Using k-Positive Maps
53(3)
2.4.2 Schmidt Number of Generalized Werner States
56(6)
References
62(1)
3 Operator Systems
63(30)
3.1 Theorems of Choi
63(4)
3.1.1 Douglas Factorization
64(1)
3.1.2 Choi-Kraus Representation and Choi Rank
64(3)
3.2 Quantum Error Correction
67(5)
3.2.1 Applications of Choi's Theorems to Error Correction
67(3)
3.2.2 Shor's Code: An Example
70(2)
3.3 Matrix Ordered Systems and Operator Systems
72(4)
3.3.1 Duals of Matrix Ordered Spaces
74(1)
3.3.2 Choi-Effros Theorem
75(1)
3.4 Tensor Products of Operator Systems
76(8)
3.4.1 Minimal Tensor Product of Operator Systems
78(1)
3.4.2 Maximal Tensor Product of Operator Systems
78(6)
3.5 Graph Operator Systems
84(2)
3.5.1 Dual of a Graph Operator System
85(1)
3.6 Three More Operator System Tensor Products
86(2)
3.6.1 The Commuting Tensor Product ⊗c
86(1)
3.6.2 The Tensor Products ⊗el and ⊗er
87(1)
3.6.3 Lattice of Operator System Tensor Products
87(1)
3.7 Some Characterizations of Operator System Tensor Products
88(2)
3.7.1 Exact Operator Systems
88(1)
3.7.2 Weak Expectation Property (WEP)
88(1)
3.7.3 Operator System Local Lifting Property (OSLLP)
89(1)
3.7.4 Double Commutant Expectation Property (DCEP)
89(1)
3.8 Operator System Tensor Products and the Conjectures of Kirchberg and Tsirelson
90(3)
3.8.1 Special Operator Sub-systems of the Free Group C*-Algebras
90(1)
3.8.2 Kirchberg's Conjecture
90(1)
3.8.3 Quotient of an Operator System
91(1)
References
92(1)
4 Quantum Information Theory
93(42)
4.1 Zero-Error Communication Via Quantum Channels
93(12)
4.1.1 Conditions for Zero-Error Quantum Communication
95(3)
4.1.2 Zero-Error Capacity and Lovasz & Function
98(7)
4.2 Strong Subadditivity and Its Equality Case
105(9)
4.2.1 Monotonicity of Relative Entropy: Petz Theorem
107(2)
4.2.2 Structure of States that Saturate Strong Subadditivity
109(2)
4.2.3 An Operator Algebraic Proof of the Koashi-Imoto Theorem
111(3)
4.3 Norms on Quantum States and Channels
114(5)
4.4 Matrix-Valued Random Variables
119(16)
4.4.1 Matrix Tail Bounds
121(3)
4.4.2 Destroying Correlations
124(5)
4.4.3 State Merging
129(4)
References
133(2)
Further Reading 135(2)
Index 137