Muutke küpsiste eelistusi

E-raamat: Functional Imaging and Modeling of the Heart: 11th International Conference, FIMH 2021, Stanford, CA, USA, June 21-25, 2021, Proceedings

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 11th International Conference on Functional Imaging and Modeling of the Heart, which took place online during June 21-24, 2021, organized by the University of Stanford.





The 65 revised full papers were carefully reviewed and selected from 68 submissions. They were organized in topical sections as follows: advanced cardiac and cardiovascular image processing; cardiac microstructure: measures and models; novel approaches to measuring heart deformation; cardiac mechanics: measures and models; translational cardiac mechanics; modeling electrophysiology, ECG, and arrhythmia; cardiovascular flow: measures and models; and atrial microstructure, modeling, and thrombosis prediction.
Population-based personalization of geometric models of myocardial
infarction.- Impact of Image Resolution and Resampling on Motion Tracking of
the Left Chambers from Cardiac Scans.- Shape Constraints in Deep Learning for
Robust 2D Echocardiography Analysis.- Image-Derived Geometric Characteristics
Predict Abdominal Aortic Aneurysm Growth in a  Machine Learning Model.-
Cardiac MRI Left Ventricular Segmentation and Function Quantification Using
Pre-trained Neural Networks.- Three-Dimensional Embedded Attentive RNN
(3D-EAR) Segmentor for Left Ventricle Delineation from Myocardial Velocity
Mapping.- Whole Heart Anatomical Refinement from CCTA using Extrapolation and
Parcellation.- Optimisation of Left Atrial Feature Tracking using
Retrospective Gated Computed Tomography Images.- Assessment of geometric
models for the approximation of aorta cross-sections.- Improved High Frame
Rate Speckle Tracking for Echocardiography.- Efficient Model Monitoring for
Quality Control in Cardiac ImageSegmentation.- Domain adaptation for
automatic aorta segmentation of 4D flow magnetic resonance imaging data from
multiple vendor scanners.- A multi-step machine learning approach for short
axis MR images segmentation.- Diffusion biomarkers in chronic myocardial
infarction.- Spatially constrained Deep Learning approach for myocardial T1
mapping.- A methodology for accessing the local arrangement of the sheetlets
that make up the extracellular heart tissue.- A High-Fidelity 3D
Micromechanical Model of Ventricular Myocardium.- Quantitative Interpretation
of Myocardial Fiber Structure in the Left and Right Ventricle of an Equine
Heart using Diffusion Tensor Cardiovascular Magnetic Resonance Imaging.-
Analysis of Location-Dependent Cardiomyocyte Branching.- Systematic Study of
Joint Influence of Angular Resolution and Noise in Cardiac Diffusion Tensor
Imaging.- Arbitrary Point Tracking with Machine Learning to Measure Cardiac
Strain in Tagged MRI.- Investigation of the impact of normalization on the
study of interactions between myocardial shape and deformation.-
Reproducibility of Left Ventricular CINE DENSE Strain in Pediatric Subjects
with Duchenne Muscular Dystrophy.- M-SiSSR: Regional Endocardial Function
using Multilabel Simultaneous Subdivision Surface Registration.- CNN-based
Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle
Myocardial Models from Cine MRI.- Multiscale Graph Convolutional Networks for
Cardiac Motion Analysis.- An image registration framework to estimate 3D
myocardial strains from cine cardiac MRI in mice.- Sensitivity of Myocardial
Stiffness Estimates to Inter-observer Variability in LV Geometric Modelling.-
A computational approach on sensitivity of left ventricular wall strains to
fiber orientation.- A Framework for Evaluating Myocardial Stiffness Using
3D-Printed Heart Phantoms.- Modeling patient-specific periaortic interactions
with static and dynamic structures using a moving heterogeneous elastic
foundation boundarycondition.- An Exploratory Assessment of Focused Septal
Growth in Hypertrophic Cardiomyopathy.- Parameter Estimation in a Rule-Based
Fiber Orientation model from End Systolic Strains Using the Reduced Order
Unscented Kalman Filter.- Effects of fibre orientation on
electrocardiographic and mechanical functions in a computational human
biventricular model.- Model-assisted time-synchronization of cardiac MR image
and catheter pressure data.- From clinical imaging to patient-specific
computational model: Rapid adaptation of the Living Heart Human Model to a
case of aortic stenosis.- Cardiac support for the right ventricle: effects of
timing on hemodynamics-biomechanics tradeoff.- In vivo pressure-volume loops
and chamber stiffness estimation using real-time 3D echocardiography and left
ventricular catheterization application to post-heart transplant patients
.- In silico mapping of the omecamtiv mecarbil effects from the sarcomere to
the whole-heart and back again.- High-Speed Simulation of the 3D Behavior of
Myocardium Using a Neural Network PDE Approach.- On the interrelationship
between left ventricle infarction geometry and ischemic mitral regurgitation
grade.- Cardiac modeling for Multisystem Inflammatory Syndrome in Children
(MIS-C, PIMS-TS).- Personal-by-design: a 3D Electromechanical Model of the
Heart Tailored for Personalisation.- Scar-Related Ventricular Arrhythmia
Prediction from Imaging using Explainable Deep Learning.- Deep Adaptive
Electrocardiographic Imaging with Generative Forward Model for Error
Reduction.- EP-Net 2.0: Out-of-Domain Generalisation for Deep Learning Models
of Cardiac Electrophysiology.- Simultaneous Multi-Heartbeat ECGI Solution
with a Time-Varying Forward Model: a Joint Inverse Formulation.- The Effect
of Modeling Assumptions on the ECG in Monodomain and Bidomain Simulations.-
Uncertainty Quantification of the Effects of Segmentation Variability in
ECGI.- Spiral Waves Generation using an Eikonal-reaction Cardiac
Electrophysiology Model.- Simplified Electrophysiology Modeling Framework to
Assess Ventricular Arrhythmia Risk in Infarcted Patients.- Sensitivity
analysis of a smooth muscle cell electrophysiological model..- A volume
source method for solving ECGI inverse problem.- Fast and Accurate
Uncertainty Quantification for the ECG with Random Electrodes Location.-
Quantitative Hemodynamics in Aortic Dissection: Comparing in vitro MRI with
FSI Simulation in a Compliant Model.- 3-D Intraventricular Vector Flow
mapping Using Triplane Doppler Echo.- The role of extra-coronary vascular
conditions that affect coronary fractional flow reserve estimation..-
In-silico analysis of the influence of pulmonary vein configuration on left
atrial haemodynamics and thrombus formation in a large cohort.- Shape
analysis and computational fluid simulations to assess feline left atrial
function and thrombogenesis.- Using the Universal Atrial Coordinate system
for MRI and electroanatomic data registration in patient-specific left atrial
model construction and simulation.- Geometric Deep Learning for the
Assessment of Thrombosis Risk in the Left Atrial Appendage.- Learning atrial
fiber orientations and conductivity tensors from intracardiac maps using
physics-informed neural networks.- The Effect of Ventricular Myofibre
Orientation on Atrial Dynamics.- Intra-Cardiac Signatures of Atrial
Arrhythmias Identified By Machine Learning and Traditional Features.-
Computational Modelling of the Role of Atrial Fibrillation on Cerebral Blood
Perfusion..