Muutke küpsiste eelistusi

E-raamat: Functional Inequalities: New Perspectives and New Applications

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 129,95 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to ""systematic"" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will--and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces.

As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational manifestations of Sturm's theory on the oscillatory behavior of certain ordinary differential equations. On the other hand, most geometric inequalities, including those of Sobolev and Log-Sobolev type, are simply expressions of the convexity of certain free energy functionals along the geodesics on the Wasserstein manifold of probability measures equipped with the optimal mass transport metric. Caffarelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities are then obtained by interpolating the above two classes of inequalities via the classical ones of Hölder. The subtle Moser-Onofri-Aubin inequalities on the two-dimensional sphere are connected to Liouville type theorems for planar mean field equations.
Preface xi
Introduction xiii
Part 1 Hardy Type Inequalities
1(68)
Chapter 1 Bessel Pairs and Sturm's Oscillation Theory
3(16)
1.1 The class of Hardy improving potentials
3(6)
1.2 Sturm theory and integral criteria for HI-potentials
9(5)
1.3 The class of Bessel pairs
14(3)
1.4 Further comments
17(2)
Chapter 2 The Classical Hardy Inequality and Its Improvements
19(12)
2.1 One dimensional Poincare inequalities
19(2)
2.2 HI-potentials and improved Hardy inequalities on balls
21(3)
2.3 Improved Hardy inequalities on domains with 0 in their interior
24(2)
2.4 Attainability of the best Hardy constant on domains with 0 in their interior
26(2)
2.5 Further comments
28(3)
Chapter 3 Improved Hardy Inequality with Boundary Singularity
31(14)
3.1 Improved Hardy inequalities on conical domains with vertex at 0
31(3)
3.2 Attainability of the Hardy constants on domains having 0 on the boundary
34(4)
3.3 Best Hardy constant for domains contained in a half-space
38(3)
3.4 The Poisson equation on the punctured disc
41(1)
3.5 Further comments
42(3)
Chapter 4 Weighted Hardy Inequalities
45(14)
4.1 Bessel pairs and weighted Hardy inequalities
45(4)
4.2 Improved weighted Hardy-type inequalities on bounded domains
49(3)
4.3 Weighted Hardy-type inequalities on Rn
52(2)
4.4 Hardy inequalities for functions in H1(Ω)
54(3)
4.5 Further comments
57(2)
Chapter 5 The Hardy Inequality and Second Order Nonlinear Eigenvalue Problems
59(10)
5.1 Second order nonlinear eigenvalue problems
59(2)
5.2 The role of dimensions in the regularity of extremal solutions
61(1)
5.3 Asymptotic behavior of stable solutions near the extremals
62(3)
5.4 The bifurcation diagram for small parameters
65(2)
5.5 Further comments
67(2)
Part 2 Hardy-Rellich Type Inequalities
69(54)
Chapter 6 Improved Hardy-Rellich Inequalities on H20(Ω)
71(22)
6.1 General Hardy-Rellich inequalities for radial functions
71(3)
6.2 General Hardy-Rellich inequalities for non-radial functions
74(4)
6.3 Optimal Hardy-Rellich inequalities with power weights xm
78(5)
6.4 Higher order Rellich inequalities
83(2)
6.5 Calculations of best constants
85(5)
6.6 Further comments
90(3)
Chapter 7 Weighted Hardy-Rellich Inequalities on H2(Ω) ∩ H10(Ω)
93(16)
7.1 Inequalities between Hessian and Dirichlet energies on H2(Ω) ∩ H10(Ω)
93(8)
7.2 Hardy-Rellich inequalities on H2(Ω) ∩ H10(Ω)
101(6)
7.3 Further comments
107(2)
Chapter 8 Critical Dimensions for 4th Order Nonlinear Eigenvalue Problems
109(14)
8.1 Fourth order nonlinear eigenvalue problems
109(1)
8.2 A Dirichlet boundary value problem with an exponential nonlinearity
110(3)
8.3 A Dirichlet boundary value problem with a MEMS nonlinearity
113(5)
8.4 A Navier boundary value problem with a MEMS nonlinearity
118(3)
8.5 Further comments
121(2)
Part 3 Hardy Inequalities for General Elliptic Operators
123(46)
Chapter 9 General Hardy Inequalities
125(18)
9.1 A general inequality involving interior and boundary weights
125(7)
9.2 Best pair of constants and eigenvalue estimates
132(2)
9.3 Weighted Hardy inequalities for general elliptic operators
134(3)
9.4 Non-quadratic general Hardy inequalities for elliptic operators
137(4)
9.5 Further comments
141(2)
Chapter 10 Improved Hardy Inequalities For General Elliptic Operators
143(14)
10.1 General Hardy inequalities with improvements
143(4)
10.2 Characterization of improving potentials via ODE methods
147(4)
10.3 Hardy inequalities on H1(Ω)
151(3)
10.4 Hardy inequalities for exterior and annular domains
154(2)
10.5 Further comments
156(1)
Chapter 11 Regularity and Stability of Solutions in Non-Self-Adjoint Problems
157(12)
11.1 Variational formulation of stability for non-self-adjoint eigenvalue problems
157(2)
11.2 Regularity of semi-stable solutions in non-self-adjoint boundary value problems
159(2)
11.3 Liouville type theorems for general equations in divergence form
161(6)
11.4 Further remarks
167(2)
Part 4 Mass Transport and Optimal Geometric Inequalities
169(30)
Chapter 12 A General Comparison Principle for Interacting Gases
171(10)
12.1 Mass transport with quadratic cost
171(2)
12.2 A comparison principle between configurations of interacting gases
173(6)
12.3 Further comments
179(2)
Chapter 13 Optimal Euclidean Sobolev Inequalities
181(10)
13.1 A general Sobolev inequality
181(1)
13.2 Sobolev and Gagliardo-Nirenberg inequalities
182(1)
13.3 Euclidean Log-Sobolev inequalities
183(2)
13.4 A remarkable duality
185(4)
13.5 Further remarks and comments
189(2)
Chapter 14 Geometric Inequalities
191(8)
14.1 Quadratic case of the comparison principle and the HWBI inequality
191(2)
14.2 Gaussian inequalities
193(3)
14.3 Trends to equilibrium in Fokker-Planck equations
196(1)
14.4 Further comments
197(2)
Part 5 Hardy-Rellich-Sobolev Inequalities
199(46)
Chapter 15 The Hardy-Sobolev Inequalities
201(12)
15.1 Interpolating between Hardy's and Sobolev inequalities
201(2)
15.2 Best constants and extremals when 0 is in the interior of the domain
203(3)
15.3 Symmetry of the extremals on half-space
206(2)
15.4 The Sobolev-Hardy-Rellich inequalities
208(3)
15.5 Further comments and remarks
211(2)
Chapter 16 Domain Curvature and Best Constants in the Hardy-Sobolev Inequalities
213(32)
16.1 From the subcritical to the critical case in the Hardy-Sobolev inequalities
213(6)
16.2 Preliminary blow-up analysis
219(8)
16.3 Refined blow-up analysis and strong pointwise estimates
227(9)
16.4 Pohozaev identity and proof of attainability
236(4)
16.5 Appendix: Regularity of weak solutions
240(3)
16.6 Further comments
243(2)
Part 6 Aubin-Moser-Onofri Inequalities
245(44)
Chapter 17 Log-Sobolev Inequalities on the Real Line
247(16)
17.1 One-dimensional version of the Moser-Aubin inequality
247(3)
17.2 The Euler-Lagrange equation and the case α ≥ 2/3
250(2)
17.3 The optimal bound in the one-dimensional Aubin-Moser-Onofri inequality
252(6)
17.4 Ghigi's inequality for convex bounded functions on the line
258(4)
17.5 Further comments
262(1)
Chapter 18 Trudinger-Moser-Onofri Inequality on S2
263(12)
18.1 The Trudinger-Moser inequality on S2
263(4)
18.2 The optimal Moser-Onofri inequality
267(3)
18.3 Conformal invariance of J1 and its applications
270(2)
18.4 Further comments
272(3)
Chapter 19 Optimal Aubin-Moser-Onofri Inequality on S2
275(14)
19.1 The Aubin inequality
275(2)
19.2 Towards an optimal Aubin-Moser-Onofri inequality on S2
277(6)
19.3 Bol's isoperimetric inequality
283(4)
19.4 Further comments
287(2)
Bibliography 289
Nassif Ghoussoub, University of British Columbia, Vancouver, BC, Canada

Amir Moradifam, Columbia University, New York, NY, USA