Muutke küpsiste eelistusi

E-raamat: Functional Neural Transplantation III: Primary and Stem Cell Therapies for Brain Repair, Part II

Volume editor (Cardiff University, Cardiff, UK), Volume editor (Lund University, Lund, Sweden)
  • Formaat: EPUB+DRM
  • Sari: Progress in Brain Research
  • Ilmumisaeg: 31-Dec-2012
  • Kirjastus: Elsevier Science Ltd
  • Keel: eng
  • ISBN-13: 9780444595454
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 238,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Progress in Brain Research
  • Ilmumisaeg: 31-Dec-2012
  • Kirjastus: Elsevier Science Ltd
  • Keel: eng
  • ISBN-13: 9780444595454
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This issue of Progress in Brain Research is split over 2 volumes, bringing together cutting-edge research on Functional Neural Transplantation. The 2 volumes review current knowledge and understanding, provide a starting point for researchers and practitioners entering the field, and build a platform for further research and discovery.

Leading authors review the state-of-the-art in their field of investigation, and provide their views and perspectives for future research
Chapters are extensively referenced to provide readers with a comprehensive list of resources on the topics covered
All chapters include comprehensive background information and are written in a clear form that is also accessible to the non-specialist

Muu info

Leading authors review the state-of-the-art in their field of investigation, and provide their views and perspectives for future research
Contributors v
SECTION 1 INTRODUCTION
Chapter 1 Introduction (Part II)
3(4)
Stephen B. Dunnett
Anders Bjorklund
Chapter 2 Transplantation in the Future
7(10)
Fred H. Gage
1 Constraints
8(3)
1.1 Role of the Cellular Graft
8(1)
1.2 Temporal Features of the Disease Model
8(1)
1.3 Safety
8(1)
1.4 Donor Cell Type: Current
9(1)
1.5 State of the Host Upon Implantation
10(1)
2 Future Directions
11(6)
2.1 Cellular Transplants to Study Human Disease
11(1)
2.2 Synthetic, Bioengineered Cells
12(5)
SECTION 2 STROKE
Chapter 3 Neural Differentiation and Support of Neuroregeneration of Non-neural Adult Stem Cells
17(18)
Rojin Abraham
Catherine M. Verfaillie
1 Introduction
18(2)
2 Adult Non-Neural Stem Cells
20(1)
3 Bone Marrow Cells/Umbilical Cord Blood Cells
20(1)
4 Endothelial Cells/Endothelial Progenitor Cells
21(1)
5 Mesenchymal Stem/Stromal Cells
22(2)
5.1 Phenotype and Origin of MSCs
22(1)
5.2 Effects of MSCs on Host Tissues
23(1)
5.3 Direct Contribution of MSCs to Tissues
24(1)
6 Adult Stem Cells with Greater Potency
24(2)
6.1 Phenotype and Origin of Cells with Greater
Potency
24(1)
6.2 Therapeutic Effects of Cells with Greater Potency
25(1)
6.3 Direct Contribution to Tissues
25(1)
7 Adult Stem Cell Grafts for Stroke
26(1)
8 Conclusions
27(8)
References
27(8)
Chapter 4 Stem Cell Repair of Striatal Ischemia
35(20)
Zaal Kokaia
Olle Lindvall
1 Introduction
35(1)
2 Transplantation of NSPCs in Stroke
36(7)
3 Endogenous Neural Stem Cells in Stroke
43(4)
4 Conclusions
47(8)
Acknowledgments
47(1)
References
47(8)
Chapter 5 In vivo Imaging of Cell Transplants in Experimental Ischemia
55(24)
Joanna Adamczak
Mathias Hoehn
1 Introduction
56(1)
2 Cell Tracking by MRI
57(8)
3 Cell Tracking by OI
65(3)
4 Cell Tracking by PET
68(1)
5 Multimodal Cell Tracking Approaches
69(2)
6 Conclusions
71(8)
Acknowledgments
72(1)
References
72(7)
Chapter 6 Bone Marrow Stem Cells in Experimental Stroke
79(20)
Jeffery D. Kocsis
Osamu Honmou
1 Introduction
79(2)
2 The Impact of MSC Transplantation in Experimental Stroke Models: Structural and Functional Changes
81(6)
2.1 Secretion or Stimulation of Trophic Factors
81(2)
2.2 Angiogenic Stimulation
83(2)
2.3 Stimulation of Neurogenesis
85(1)
2.4 Possible Rapid Effects on Neuronal Excitability
85(1)
2.5 Homing Mechanisms of MSCs to Injured CNS
86(1)
3 Intravenous Delivery of Human MSCs in a Nonhuman Primate Model of Stroke as a Prelude to Phase I Human Clinical Study
87(1)
4 Clinical Studies in Stroke Patients Utilizing Intravenously Applied hMSCs
88(3)
5 Prospects
91(8)
References
93(6)
Chapter 7 Advantages and Challenges of Alternative Sources of Adult-Derived Stem Cells for Brain Repair In Stroke
99(20)
Paul R. Sanberg
David J. Eve
Christopher Metcalf
Cesario V. Borlongan
1 Introduction
99(1)
2 Adult Stem Cells
100(1)
3 Neural Stem Cells
100(2)
4 Mesenchymal Stromal Cells
102(1)
5 Extraembryonic Tissue Stem Cells
103(1)
6 Umbilical Cord Blood
104(1)
7 Adipose Tissue
104(1)
8 Menstrual Blood
105(1)
9 Breast Milk
105(1)
10 Teeth
106(1)
11 Induced Pluripotent Stem Cells
106(1)
12 Autologous Versus Allogeneic
107(1)
13 Co-Transplantation and Combination Therapy
108(1)
14 Other Factors
108(1)
15 Mode of Action
109(1)
16 Conclusions
109(10)
Acknowledgments
109(1)
References
109(10)
Chapter 8 Prospects for Stem Cell-Derived Therapy in Stroke
119(52)
John D. Sinden
Indira Vishnubhatla
Keith W. Muir
1 Introduction
120(3)
2 Early Clinical Experience
123(6)
3 Trials Using Neural Cells
129(1)
3.1 Human Teratocarcinoma Cells
129(1)
3.2 Fetal Porcine Cells
130(1)
4 Trials Using Bone Marrow-Derived Cells
130(2)
4.1 Supporting Preclinical Studies Using MNCs
131(1)
4.2 Autologous MNCs Clinical Experience
132(1)
5 Trials using Autologous Mesenchymal or Marrow Stromal Cells
132(3)
5.1 Supporting Preclinical Studies
133(1)
5.2 Autologous MSC Clinical Experience
133(2)
6 Increasing Translational Success for Future Clinical Application
135(2)
6.1 Autologous Therapies
135(1)
6.2 Allogeneic Therapies
135(2)
7 Current Clinical Products and Approaches
137(1)
8 Current Cell Therapies Targeting the Acute Phase
137(3)
8.1 Adipose Tissue-Derived Stromal Cells
137(2)
8.2 Allogeneic MSC Products
139(1)
8.3 Autologous MNCs
139(1)
9 Cell Therapies Targeting the Subacute Phase
140(1)
9.1 Selected Autologous ALDH+ MNCs (Aldagen)
140(1)
10 Cell Therapies Targeting Chronic Stroke
140(2)
10.1 Genetically Modified Bone Marrow Stromal Cell Product (San Bio)
140(1)
10.2 Conditionally Immortalized Neural Stem Cell Drug Product (ReNeuron)
141(1)
11 Factors to Enhance Endogenous Stem Cell Therapy
142(3)
11.1 Erythropoietins
142(2)
11.2 Granulocyte-Colony-Stimulating Factor
144(1)
12 Cell Delivery Approaches
145(4)
12.1 Timing After Stroke
145(1)
12.2 Route of Administration
146(1)
12.3 Use of Immunosuppression
147(1)
12.4 Cell Tracking
148(1)
13 Patient Selection
149(3)
13.1 Location of Infarct
149(2)
13.2 Effects of Age
151(1)
13.3 Comorbidities
151(1)
14 Clinical Trial Development
152(4)
14.1 Phase I Trials
152(1)
14.2 Phase II Clinical Development
153(2)
14.3 Clinical Endpoints
155(1)
14.4 Potential Biomarkers
155(1)
14.5 Concomitant Therapies
156(1)
15 Future Prospects
156(15)
References
157(14)
SECTION 3 RETINAL AND CORTICAL REPAIR
Chapter 9 Generation of Retinal Cells from Pluripotent Stem Cells
171(12)
Zi-Bing Jin
Masayo Takahashi
1 Introduction
171(2)
2 Embryogenesis and Retinal Development
173(1)
3 Induction of Retinal Progenitors from Pluripotent Stem Cells
174(1)
4 Directed Differentiation of Mature Retinal Photoreceptor Cells
175(1)
5 Generation of Retinal Pigment Epithelial Cells
176(1)
6 Differentiation of Other Types of Retinal Neural Cells
177(1)
7 Producing Three-Dimensional Retinal Tissue
177(1)
8 Perspective on Pluripotent Stem Cell-Derived Retinal Cells
178(5)
Acknowledgments
178(1)
References
179(4)
Chapter 10 Generation of Cortical Neurons from Pluripotent Stem Cells
183(16)
Pierre Vanderhaeghen
1 Introduction
183(1)
2 A Primitive Pathway of Specification of the Forebrain/Telencephalon
184(2)
3 Modulating Dorsoventral Identity and Neuronal Specification
186(1)
4 Generation of a Diverse Array of Pyramidal Neurons In vitro
187(3)
5 Specification of Cortical Areal Identity from ESCs: Surprising Insights from In vivo Transplantation
190(1)
6 Corticogenesis from Pluripotent Stem Cells: Perspectives and Challenges for Models of Disease and Brain Repair
191(8)
Acknowledgments
192(1)
References
192(7)
SECTION 4 SPINAL CORD REPAIR
Chapter 11 Repair Involves All Three Surfaces of the Glial Cell
199(20)
Ying Li
Daqing Li
Ahmed Ibrahim
Geoffrey Raisman
1 Three Surfaces of Glia
199(2)
2 Responses to Injury
201(3)
2.1 Neurons
201(1)
2.2 The Glial Scar
202(2)
3 The Olfactory System
204(2)
3.1 OECs
204(1)
3.2 Fibroblasts
205(1)
4 Repair by OEC Transplants
206(8)
4.1 Corticospinal Tract Lesions
206(2)
4.2 Optic Nerve Lesions
208(2)
4.3 Avulsed Dorsal Roots
210(2)
4.4 Crossing the Astrocytic Scar
212(1)
4.5 Mechanism of OEC Repair
213(1)
5 The Pathway Hypothesis
214(5)
References
215(4)
Chapter 12 Current Status of Myelin Replacement Therapies in Multiple Sclerosis
219(14)
Jeffrey K. Huang
Robin J.M. Franklin
1 Inflammatory Destruction of Central Nerve Cables
220(1)
2 Myelin Maintains Axonal Integrity
220(1)
3 Obstacles Facing Remyelination
221(1)
4 Regenerative Medicine in MS
222(1)
5 Exogenous Cell Therapy
222(2)
6 Endogenous Cell Therapy
224(2)
7 Future Outlook
226(7)
References
227(6)
Chapter 13 Stem Cell-Based Treatments for Spinal Cord Injury
233(20)
Lindsey A. Wyatt
Hans S. Keirstead
1 Introduction
233(1)
2 Epidemiology
234(1)
3 Pathogenesis
234(2)
4 Stem Cells
236(1)
5 Embryonic Stem Cells
236(2)
6 Oligodendrocyte Progenitors Cells
238(1)
7 Motor Neuron Progenitors
239(1)
8 Neural Stem Cells
240(1)
9 Mesenchymal and Hematopoietic Stem Cells
241(1)
10 Purity
242(1)
11 Challenges for Clinical Translation
242(2)
12 Regulatory Agencies
244(9)
Acknowledgments
244(1)
References
244(9)
Chapter 14 The Challenges of Long-Distance Axon Regeneration in the Injured CNS
253(42)
Daniel J. Chew
James W. Fawcett
Melissa R. Andrews
1 Spinal Cord Injury Demographics and General Information
255(2)
2 Pathology of SCI: Acute
257(3)
3 Pathology of SCI: Subacute/Chronic
260(3)
3.1 Cyst Formation
260(1)
3.2 Glial Scar and Chondroitin Sulfate Proteoglycans
261(1)
3.3 Fibrotic Scar
262(1)
3.4 Chronic Demyelination and Myelin Debris
263(1)
4 Cases of Successful CNS Regeneration
263(2)
4.1 Invertebrates and Lower Vertebrate Models of CNS Regeneration
263(2)
5 Extrinsic Factors that Impede Axon Regeneration in the Injury Spinal Cord
265(5)
5.1 Myelin Inhibition
265(1)
5.2 Scar Inhibition
266(2)
5.3 Inflammation
268(2)
6 Intrinsic Factors that Limit the Neuronal Growth Response After Injury
270(8)
6.1 Conditioning Lesions
270(1)
6.2 Phosphatase and Tensin Homolog
271(2)
6.3 Taxol/Paclitaxel
273(1)
6.4 Rho/ROCK
274(1)
6.5 Ephs/Ephrins
275(1)
6.6 Integrins
275(3)
6.7 Growth and NT Factors
278(1)
7 Conclusions
278(17)
Acknowledgments
279(1)
References
279(16)
Chapter 15 Schwann Cell Transplantation: A Repair Strategy for Spinal Cord Injury?
295(18)
Ryan R. Wiliams
Mary Bartlett Bunge
1 Introduction
296(1)
2 Earlier Studies of SC Transplantation
296(3)
3 More Recent SC Transplantation Studies
299(2)
4 The SC Graft/Host Spinal Cord Interface
301(12)
Acknowledgments
307(1)
References
307(6)
Chapter 16 Generation of Motor Neurons from Pluripotent Stem Cells
313(20)
Peter H. Chipman
Jeremy S. Toma
Victor F. Rafuse
1 Introduction
314(1)
2 Toward the Genesis of Motor Neurons from Stem Cells
314(2)
3 Derivation of Motor Neurons from ES Cells
316(4)
3.1 Functional Properties of Mouse ES Cell-Derived Motor Neurons
317(1)
3.2 Human ES Cell-Derived Motor Neurons
318(1)
3.3 ES Cell-Derived Motor Neurons: Preclinical Studies
318(2)
4 iPS Cell-Derived Motor Neurons
320(3)
5 Direct Conversion of Fibroblasts into Induced Motor Neurons
323(1)
6 Summary and Future Directions
323(10)
References
325(8)
Chapter 17 Transplantation of Mesenchymal stem Cells in ALS
333(28)
Letizia Mazzini
Alessandro Vercelli
Ivana Ferrero
Marina Boido
Roberto Cantello
Franca Fagioli
1 Introduction
333(1)
2 Stem Cell Transplantation as a Therapeutic Strategy
334(1)
3 Growth Factors and ALS
335(1)
4 Mesenchymal Stem Cells
336(4)
5 Translation into the Clinic
340(1)
6 Allogenic Versus Autologous MSCs for Transplantation
340(1)
7 Characterization and Manufacture of Cell Product for Transplantation
341(1)
8 How to Get Cells where they are Needed?
342(1)
9 Intraparenchymal Delivery
343(2)
10 Intramuscular grafting
345(1)
11 MSCs as Immunomodulatory Agents: Intravenous and Intrathecal Delivery
345(1)
12 How Many Cells Need to be Injected?
346(1)
13 Clinical Trial Design
347(4)
14 Conclusions
351(10)
References
352(9)
Combined Index 361(14)
Other volumes in Progress in Brain Research 375
Dunnett is a behavioural neuroscientist who started a lifelong collaboration with the Björklund team in 1979 to explore the functional consequences of cell transplantation method in animal models of neurodegenerative disease, in particular involving cell replacement and repair of the basal ganglia. He has developed models and novel methods of motor and cognitive assessment to apply behavioural analysis not simply to assess functional efficacy of implanted cells, but as a tool to study the mechanisms of cell integration, circuit reconstruction and functional repair. In parallel his laboratory originated the first UK trial of cell transplantation in Huntingtons disease, and provides the source of clinical grade cells for further ongoing trials in Parkinsons disease. As a neuroanatomist and developmental neurobiologist, during the 1970s Björklunds lab originated reliable methods for transplantation of embryonic tissues into brain that pioneered practical cell transplantation in the central nervous system, providing the basis for technologies that are now used by laboratories world-wide. In parallel, work in the field has progressed from basic anatomical and developmental studies in experimental animals, via applications for assessing cell replacement and repair using primary and stem cells in the damaged brain, and now underpinning the majority of methods in development for cell therapy in patients. His laboratory continues to analyse the fundamental neurobiology and principles of cell transplantation, regeneration and integration in the CNS, as well as originating the first trials of effective clinical cell transplantation (for Parkinsons disease) in patients