Muutke küpsiste eelistusi

E-raamat: Functional Tactile Sensors: Materials, Devices and Integrations

Edited by (Institute for Advanced Study, Shenzhen University, China), Edited by (Department of Chemical Engineering, National Tsing Hua University, Taiwan)
  • Formaat - EPUB+DRM
  • Hind: 225,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Functional Tactile Sensors: Materials, Devices and Integrations focuses on the subject of novel materials design and device integration of tactile sensors for functional applications. The book addresses the design, materials characteristics, device operation principles, specialized device application and mechanisms of the latest reported tactile sensors. The emphasis of the book lies in the materials science aspects of tactile sensors—understanding the relationship between material properties and device performance. It will be an ideal resource for researchers working in materials science, engineering and physics.
  • Includes the latest advances and recent developments in tactile sensors for artificial intelligence applications
  • Reviews the relationship between materials properties and device performance
  • Addresses materials and device design strategies for targeted sensing applications
Contributors ix
Preface xiii
1 Introduction to tactile sensors
1(12)
Hongye Chen
Ye Zhou
1.1 Introduction
1(1)
1.2 The principles of tactile sensors
1(5)
1.3 Past trends and advancements
6(7)
References
10(3)
2 Resistive tactile sensors
13(18)
Yue Li
Lu Zheng
Xuewen Wang
Wei Huang
2.1 Introduction
13(1)
2.2 Principle of resistive tactile sensors
14(5)
2.3 Pressure detection of resistive tactile sensors
19(3)
2.4 Multi-functional tactile sensors
22(1)
2.5 Discussion and outlooks
23(8)
References
26(5)
3 Tactile sensor based on capacitive structure
31(22)
Ho-Hsiu Chou
Wen-Ya Lee
3.1 Introduction
31(1)
3.2 Resistive pressure sensors
32(8)
3.3 Capacitive pressure sensors
40(10)
3.4 Perspective
50(3)
References
51(2)
4 Tactile sensors based on organic field-effect transistors
53(14)
Wen-Ya Lee
4.1 Introduction
53(1)
4.2 Operation principle of field-effect transistors
53(2)
4.3 Tactile field-effect transistors
55(2)
4.4 Multifunctional transistor-based pressure sensors
57(5)
4.5 Perspective
62(5)
References
64(3)
5 Conductive composite-based tactile sensor
67(24)
Haotian Chen
Haixia Zhang
5.1 Introduction
67(1)
5.2 Working mechanism
68(2)
5.3 Preparation methods
70(10)
5.4 Applications
80(8)
5.5 Summary
88(3)
References
88(3)
6 Mechanoluminescent materials for tactile sensors
91(22)
Dengfeng Peng
Sicen Qu
6.1 Background
91(2)
6.2 Mechanoluminescence materials for tactile sensors
93(14)
6.3 Conclusions and prospective
107(6)
Acknowledgments
108(1)
References
108(5)
7 Mechanophores in polymer mechanochemistry: Insights from single-molecule experiments and computer simulations
113(28)
Wenjin Li
7.1 Introduction
113(2)
7.2 Brief theory of mechanochemistry
115(1)
7.3 Single-molecule approaches
115(3)
7.4 Computational approaches
118(5)
7.5 Covalent mechanophores
123(5)
7.6 Organometallic mechanophores
128(3)
7.7 The effect of polymer chain
131(2)
7.8 Conclusions and perspectives
133(8)
Acknowledgments
133(1)
References
134(7)
8 Perovskites for tactile sensors
141(18)
Rohit Saraf
Vivek Maheshwari
8.1 Introduction
141(1)
8.2 Background on need for self-powered sensors
142(1)
8.3 Polarization effects in perovskites and their basic properties
143(7)
8.4 Design of perovskite-based light-powered tactile sensors
150(4)
8.5 Future vision and challenges
154(5)
References
154(5)
9 Electrospun nanofibers for tactile sensors
159(38)
Yichun Ding
Obiora Onyilagha
Zhengtao Zhu
9.1 Introduction
159(1)
9.2 Electrospinning and electrospun nanofibers
160(4)
9.3 Transduction mechanisms of tactile sensor
164(3)
9.4 Tactile sensors from electrospun nanofibrous materials
167(17)
9.5 Conclusions and perspective
184(13)
Acknowledgments
186(1)
References
186(11)
10 Tactile sensors based on buckle structure
197(22)
Yuhuan Lv
Mingti Wang
Lizhen Min
Kai Pan
10.1 Introduction
197(1)
10.2 Buckle structure in tactile sensor
197(1)
10.3 Methods of buckle structures
198(8)
10.4 Conductive materials for buckled tactile sensor
206(8)
10.5 Overview
214(5)
References
215(4)
11 Tactile sensors based on ionic liquids
219(26)
Yapei Wang
Naiwei Gao
Yonglin He
11.1 Introduction of ionic liquids
219(3)
11.2 Pressure sensors based on ionic liquids
222(4)
11.3 Temperature sensors based on ionic liquids
226(5)
11.4 Signal separation and integration of tactile sensors based on ionic liquids
231(4)
11.5 Preventing the leakage of ionic liquid-based sensors
235(6)
11.6 Summary and outlook of the tactile sensor based on ionic liquid
241(4)
References
241(4)
12 Self-powered flexible tactile sensors
245(18)
Xuan Zhang
Bin Su
12.1 Introduction
245(1)
12.2 Flexible piezoelectric nanogenerators
246(4)
12.3 Flexible triboelectric nanogenerators
250(5)
12.4 Flexible, self-powered magnetoelectric elastomers
255(1)
12.5 Conclusion and challenges
256(7)
Acknowledgements
257(1)
References
257(6)
13 Self-healable tactile sensors
263(28)
Jinqing Wang
Xianzhang Wu
Zhangpeng Li
Shengrong Yang
13.1 Introduction
263(1)
13.2 The structure and functional materials of self-healing tactile sensors
264(9)
13.3 Self-healing mechanisms of tactile sensors
273(4)
13.4 Applications of self-healing tactile sensors
277(6)
13.5 Outlook and future challenges
283(8)
Acknowledgment
284(1)
References
284(7)
Index 291
Ye Zhou is an IAS Fellow in the Institute for Advanced Study, Shenzhen University. His research interests include flexible and printed electronics, organic/inorganic semiconductors, surface and interface physics, nanostructured materials, and nano-scale devices for technological applications, such as logic circuits, data storage, photonics and sensors. Prof. Ho-Hsiu Chou is an assistant professor at National Tsing Hua University, Taiwan. He received his Ph.D. (2010) in Chemistry from National Tsing Hua University, and as a visiting researcher in IMEC, and Postdoctoral Fellow in Chemical Engineering from Stanford University. His research interests include design the soft functional materials and their applications in sensors, flexible, stretchable and wearable electronics. He has published 17 patents and 22 peer-reviewed papers in journals such as Nature Communications, Science, Advanced Materials, Advanced Functional Materials, ACS Catalysis, ACS Central Science, etc.