Muutke küpsiste eelistusi

E-raamat: Fundamental Solutions and Local Solvability for Nonsmooth Hoermander's Operators

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 99,45 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The authors consider operators of the form $L=\sum_{i=1}^{n}X_{i}^{2}+X_{0}$ in a bounded domain of $\mathbb{R}^{p}$ where $X_{0},X_{1},\ldots,X_{n}$ are nonsmooth Hormander's vector fields of step $r$ such that the highest order commutators are only Holder continuous. Applying Levi's parametrix method the authors construct a local fundamental solution $\gamma$ for $L$ and provide growth estimates for $\gamma$ and its first derivatives with respect to the vector fields. Requiring the existence of one more derivative of the coefficients the authors prove that $\gamma$ also possesses second derivatives, and they deduce the local solvability of $L$, constructing, by means of $\gamma$, a solution to $Lu=f$ with Holder continuous $f$. The authors also prove $C_{X,loc}^{2,\alpha}$ estimates on this solution.
Introduction
Some known results about nonsmooth Hormander's vector fields
Geometric estimates
The parametrix method
Further regularity of the fundamental solution and local solvability of $L$
Appendix. Examples of nonsmooth Hormander's operators satisfying assumptions
A or B
Bibliography.
Marco Bramanti, Politecnico di Milano, Italy.

Luca Brandolini, Universita di Bergamo, Dalmine, Italy.

Maria Manfredini, Universita di Bologna, Italy.

Marco Pedroni, Universita di Bergamo, Dalmine, Italy.