Muutke küpsiste eelistusi

E-raamat: Fundamentals of Ceramics

(Drexel University, Philadelphia, Pennsylvania, USA University of Colorado Drexel University, Philadelphia, Pennsylvania, USA Drexel University, Philadelphia, Pennsylvania, USA Drexel University)
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Fundamentals of Ceramics presents readers with an exceptionally clear and comprehensive introduction to ceramic science. This Second Edition updates problems and adds more worked examples, as well as adding new chapter sections on Computational Materials Science and Case Studies.

The Computational Materials Science sections describe how today density functional theory and molecular dynamics calculations can shed valuable light on properties, especially ones that are not easy to measure or visualize otherwise such as surface energies, elastic constants, point defect energies, phonon modes, etc. The Case Studies sections focus more on applications, such as solid oxide fuel cells, optical fibers, alumina forming materials, ultra-strong and thin glasses, glass-ceramics, strong and tough ceramics, fiber-reinforced ceramic matrix composites, thermal barrier coatings, the space shuttle tiles, electrochemical impedance spectroscopy, two-dimensional solids, field-assisted and microwave sintering, colossal magnetoresistance, among others.
Series Preface xi
Preface to the Second Edition xiii
Preface to First Edition xv
Author xix
1 Introduction
1(12)
1.1 Introduction
1(1)
1.2 Definition of Ceramics
2(1)
1.3 Elementary Crystallography
3(3)
1.4 Ceramic Microstructures
6(1)
1.5 Traditional versus Advanced Ceramics
6(1)
1.6 General Characteristics of Ceramics
7(1)
1.7 Applications
7(2)
1.8 The Future
9(2)
Additional Reading
11(2)
2 Bonding in Ceramics
13(42)
2.1 Introduction
13(1)
2.2 Structure of Atoms
14(9)
2.3 Ionic versus Covalent Bonding
23(1)
2.4 Ionic Bonding
23(5)
2.5 Lonically Bonded Solids
28(6)
2.6 Covalent Bond Formation
34(3)
2.7 Covalently Bonded Solids
37(1)
2.8 Band Theory of Solids
37(12)
2.9 Summary
49(1)
Appendix 2A Kinetic Energy of Free Electrons
50(2)
Additional Reading
52(1)
Other References
53(2)
3 Structure of Ceramics
55(38)
3.1 Introduction
55(2)
3.2 Ceramic Structures
57(5)
3.3 Binary Ionic Compounds
62(5)
3.4 Composite Crystal Structures
67(3)
3.5 Structure of Covalent Ceramics
70(1)
3.6 Structure of Layered Ceramics
70(1)
3.7 Structure of Silicates
71(6)
3.8 Lattice Parameters and Density
77(8)
3.9 Summary
85(1)
Appendix 3A
86(6)
Additional Reading
92(1)
Other References
92(1)
4 Effect of Chemical Forces on Physical Properties
93(24)
4.1 Introduction
93(1)
4.2 Melting Points
94(5)
4.3 Thermal Expansion
99(1)
4.4 Young's Modulus and the Strength of Perfect Solids
100(6)
4.5 Surface Energy
106(2)
4.6 Frequencies of Atomic Vibrations
108(5)
4.7 Summary
113(3)
Additional Reading
116(1)
Multimedia References and Databases
116(1)
5 Thermodynamic and Kinetic Considerations
117(30)
5.1 Introduction
117(1)
5.2 Free Energy
118(11)
5.3 Chemical Equilibrium and the Mass Action Expression
129(1)
5.4 Chemical Stability Domains
130(3)
5.5 Electrochemical Potentials
133(1)
5.6 Charged Interfaces, Double Layers and DebyeLengths
134(1)
5.7 Gibbs-Duhem Relation for Binary Oxides
135(3)
5.8 Kinetic Considerations
138(4)
5.9 Summary
142(1)
Appendix 5A Derivation of Eq. (5.27)
142(3)
Additional Reading
145(1)
Thermodynamic Data
145(2)
6 Defects in Ceramics
147(42)
6.1 Introduction
147(1)
6.2 Point Defects
148(28)
6.3 Linear Defects
176(2)
6.4 Planar Defects
178(6)
6.5 Summary
184(3)
Additional Reading
187(2)
7 Diffusion and Electrical Conductivity
189(68)
7.1 Introduction
189(1)
7.2 Diffusion
190(16)
7.3 Electrical Conductivity
206(18)
7.4 Ambipolar Diffusion
224(12)
7.5 Relationships between Self-, Tracer, Chemical, Ambipolar and Defect Diffusion Coefficients
236(7)
7.6 Summary
243(2)
Appendix 7A Relationship between Fick's First Law and Eq. (7.30)
245(1)
Appendix 7B Effective Mass and Density of States
246(2)
Appendix 7C Derivation of Eq. (7.79)
248(1)
Appendix 7D Derivation of Eq. (7.92)
248(7)
Additional Reading
255(1)
Other References
255(2)
8 Phase Equilibria
257(22)
8.1 Introduction
257(1)
8.2 Phase Rule
258(1)
8.3 One-Component Systems
259(3)
8.4 Binary Systems
262(8)
8.5 Ternary Systems
270(1)
8.6 Free-Energy Composition and Temperature Diagrams
271(5)
8.7 Summary
276(1)
Additional Reading
277(1)
Phase Diagram Information
278(1)
9 Formation, Structure and Properties of Glasses
279(36)
9.1 Introduction
279(1)
9.2 Glass Formation
280(13)
9.3 Glass Structure
293(2)
9.4 Glass Properties
295(14)
9.5 Summary
309(1)
Appendix 9A Derivation of Eq. (9.7)
310(3)
Additional Reading
313(1)
Other References
314(1)
10 Sintering and Grain Growth
315(54)
10.1 Introduction
315(2)
10.2 Solid-State Sintering
317(10)
10.3 Solid-State Sintering Kinetics
327(22)
10.4 Liquid-Phase Sintering
349(6)
10.5 Hot Pressing and Hot Isostatic Pressing
355(4)
10.6 Summary
359(1)
Appendix 10A Derivation of the Gibbs-Thompson Equation
360(1)
Appendix 10B Radii of Curvature
361(1)
Appendix 10C Derivation of Eq. (10.20)
362(1)
Appendix 10D Derivation of Eq. (10.22)
363(4)
Additional Reading
367(1)
Other References
368(1)
11 Mechanical Properties: Fast Fracture
369(46)
11.1 Introduction
369(4)
11.2 Fracture Toughness
373(10)
11.3 Atomistic Aspects of Fracture
383(2)
11.4 Strength of Ceramics
385(7)
11.5 Toughening Mechanisms
392(7)
11.6 Designing with Ceramics
399(9)
11.7 Summary
408(5)
Additional Reading
413(2)
12 Creep, Subcritical Crack Growth and Fatigue
415(44)
12.1 Introduction
415(1)
12.2 Creep
416(14)
12.3 Subcritical Crack Growth
430(6)
12.4 Fatigue of Ceramics
436(3)
12.5 Lifetime Predictions
439(11)
12.6 Summary
450(1)
Appendix 12A Derivation of Eq. (12.24)
451(5)
Additional Reading
456(3)
13 Thermal Properties
459(24)
13.1 Introduction
459(1)
13.2 Thermal Stresses
460(4)
13.3 Thermal Shock
464(5)
13.4 Spontaneous Microcracking of Ceramics
469(3)
13.5 Thermal Tempering of Glass
472(1)
13.6 Thermal Conductivity
473(6)
13.7 Summary
479(3)
Additional Reading
482(1)
Other Resources
482(1)
14 Linear Dielectric Properties
483(46)
14.1 Introduction
483(1)
14.2 Basic Theory
484(5)
14.3 Equivalent Circuit Description of Linear Dielectrics
489(5)
14.4 Polarization Mechanisms
494(19)
14.5 Dielectric Loss
513(1)
14.6 Dielectric Breakdown
514(1)
14.7 Capacitors and Insulators
515(5)
14.8 Summary
520(1)
Appendix 14A Local Electric Field
521(6)
Additional Reading
527(2)
15 Magnetic and Nonlinear Dielectric Properties
529(48)
15.1 Introduction
529(1)
15.2 Basic Theory
530(6)
15.3 Microscopic Theory
536(4)
15.4 Para-, Ferro-, Antiferro-, and Ferrimagnetism
540(8)
15.5 Magnetic Domains and Hysteresis Curves
548(4)
15.6 Magnetic Ceramics and Their Applications
552(7)
15.7 Piezo-and Ferroelectric Ceramics
559(13)
15.8 Summary
572(1)
Appendix 15A Orbital Magnetic Quantum Number
573(3)
Additional Reading
576(1)
15 Optical Properties
577(34)
16.1 Introduction
577(2)
16.2 Basic Principles
579(11)
16.3 Absorption and Transmission
590(6)
16.4 Scattering and Opacity
596(9)
16.6 Summary
605(1)
Appendix 16A Coherence
606(1)
Appendix 16B Assumptions Made in Deriving Eq. (16.24)
606(4)
Additional Reading
610(1)
Index 611
Prof. Michel W. Barsoum is Distinguished Professor in the Department of Materials Science and Engineering at Drexel University. As the author of two entries on the MAX phases in the Encyclopedia of Materials Science, and the book MAX Phases published in 2013, he is an internationally recognized leader in the area of MAX phases. In 2011, he and colleagues at Drexel, selectively etched the A-group layers from the MAX phases to produce an entirely new family of 2D solids that they labeled MXenes, that have sparked global interest because of their potential in a multitude of applications. He has authored the book MAX Phases: Properties of Machinable Carbides and Nitrides, published by Wiley VCH in 2013. He has published over 450 refereed papers, including ones in top-tier journals such as Nature and Science. According to Google Scholar his h-index is >100 with over 44,000 citations. He made ISIs most cited researchers list in 2018 and 2019. He is a foreign member of the Royal Swedish Academy of Engineering Sciences, a fellow of the American Ceramic Society and the World Academy of Ceramics. The latter awarded him the quadrennial International Ceramics Prize 2020, one of the highest honors in the field. In 2000, he was awarded a Humboldt-Max Planck Research Award for Senior US Research Scientists and spent a sabbatical year at the Max Planck Institute in Stuttgart, Germany. In 2008, he spent a sabbatical at the Los Alamos National Laboratory as the prestigious Wheatly Scholar. He has been a visiting professor at Linkoping University in Sweden since 2008. In 2017, he received a Chair of Excellence from the Nanoscience Foundation in Grenoble, France. He is co-editor of Materials Research Letters, published by Taylor & Francis.