Muutke küpsiste eelistusi

E-raamat: Fundamentals of Data Communication Networks

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Dec-2017
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119436270
  • Formaat - EPUB+DRM
  • Hind: 141,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Dec-2017
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119436270

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

What every electrical engineering student and technical professional needs to know about data exchange across networks

While most electrical engineering students learn how the individual components that make up data communication technologies work, they rarely learn how the parts work together in complete data communication networks. In part, this is due to the fact that until now there have been no texts on data communication networking written for undergraduate electrical engineering students. Based on the author’s years of classroom experience, Fundamentals of Data Communication Networks fills that gap in the pedagogical literature, providing readers with a much-needed overview of all relevant aspects of data communication networking, addressed from the perspective of the various technologies involved.

The demand for information exchange in networks continues to grow at a staggering rate, and that demand will continue to mount exponentially as the number of interconnected IoT-enabled devices grows to an expected twenty-six billion by the year 2020. Never has it been more urgent for engineering students to understand the fundamental science and technology behind data communication, and this book, the first of its kind, gives them that understanding. To achieve this goal, the book:

  • Combines signal theory, data protocols, and wireless networking concepts into one text
  • Explores the full range of issues that affect common processes such as media downloads and online games
  • Addresses services for the network layer, the transport layer, and the application layer
  • Investigates multiple access schemes and local area networks with coverage of services for the physical layer and the data link layer
  • Describes mobile communication networks and critical issues in network security
  • Includes problem sets in each chapter to test and fine-tune readers’ understanding

Fundamentals of Data Communication Networks is a must-read for advanced undergraduates and graduate students in electrical and computer engineering. It is also a valuable working resource for researchers, electrical engineers, and technical professionals.

Preface xv
Acknowledgments xix
1 Overview of Data Communication Networks 1(16)
1.1 Introduction
1(1)
1.2 Data Communication Network Model
1(2)
1.3 Classification of Data Communication Networks
3(8)
1.3.1 Transmission Method
3(1)
1.3.2 Data Flow Direction
3(1)
1.3.3 Network Topology
4(3)
1.3.4 Geographical Coverage
7(1)
1.3.5 Transmission Medium
8(1)
1.3.6 Data Transfer Technique
8(1)
1.3.7 Network Access Technique
9(1)
1.3.8 Media Sharing Technique
9(2)
1.4 Data Network Architecture
11(3)
1.4.1 The OSI Protocol Reference Model
11(1)
1.4.2 The Internet Architecture
12(2)
1.5 Summary
14(3)
2 Physical Layer 17(56)
2.1 Introduction
17(1)
2.2 Classification of Signals
17(1)
2.3 Periodic Signals
18(1)
2.4 Fourier Analysis of Periodic Signals
18(5)
2.4.1 Reconstructing a Function from its Fourier Series
20(1)
2.4.2 Fourier Analysis of Even and Odd Functions
21(1)
2.4.3 Parseval's Theorem
22(1)
2.4.4 Complex Form of Fourier Series
23(1)
2.5 Fourier Transform of Nonperiodic Signals
23(1)
2.6 Filters
24(2)
2.7 Line Coding
26(2)
2.8 Modulation
28(10)
2.8.1 Trigonometric Refresher Course
30(1)
2.8.2 Amplitude Modulation
31(5)
2.8.2.1 Overmodulation and Distortion
34(1)
2.8.2.2 Single-Sideband Suppressed-Carrier Amplitude Modulation
34(2)
2.8.3 Frequency Modulation
36(2)
2.8.4 Phase Modulation
38(1)
2.9 Sampling Theorem
38(6)
2.9.1 Analyzing Impulse Train Sampling
39(1)
2.9.2 Reconstruction of the Continuous-Time Signal
40(2)
2.9.3 Statement of the Sampling Theorem
42(1)
2.9.4 Proof of the Sampling Theorem
42(2)
2.10 Analog-to-Digital Conversion: From PAM to PCM
44(2)
2.10.1 Pulse Code Modulation
44(1)
2.10.2 Quantization Noise
45(1)
2.11 Basic Digital Modulation Schemes
46(4)
2.11.1 Amplitude-Shift Keying
46(1)
2.11.2 Frequency-Shift Keying
47(1)
2.11.3 Phase-Shift Keying
48(2)
2.12 Media Sharing Schemes
50(4)
2.12.1 Frequency Division Multiplexing
50(2)
2.12.1.1 Wavelength Division Multiplexing
52(1)
2.12.2 Time Division Multiplexing
52(2)
2.12.2.1 Synchronous Versus Asynchronous TDM
52(2)
2.13 Modems
54(1)
2.14 Transmission Media
54(7)
2.14.1 Twisted Pair
55(1)
2.14.2 Coaxial Cable
55(1)
2.14.3 Optical Fiber
56(3)
2.14.3.1 Fiber Modes
58(1)
2.14.4 Wireless Medium
59(2)
2.15 Channel Impairments
61(7)
2.15.1 Attenuation
61(1)
2.15.2 Noise
61(2)
2.15.2.1 Concept of Decibel
63(1)
2.15.2.2 Signal-to-Noise Ratio
64(1)
2.15.3 Distortion
65(1)
2.15.4 Equalization
66(2)
2.16 Summary
68(5)
3 Data Link Layer Protocols 73(18)
3.1 Introduction
73(1)
3.2 Framing
73(1)
3.3 Bit Stuffing
74(1)
3.4 Flow Control
74(2)
3.4.1 The Stop-and-Wait Protocol
75(1)
3.4.2 The Sliding Window Flow Control
75(1)
3.5 Error Detection
76(4)
3.5.1 Parity Checking
76(1)
3.5.2 Two-Dimensional Parity
77(1)
3.5.3 Cyclic Redundancy Checking
78(2)
3.6 Error Control Protocols
80(2)
3.6.1 Stop-and-Wait ARQ
81(1)
3.6.2 Go-Back-N ARQ
81(1)
3.6.3 Selective Repeat ARQ
82(1)
3.7 Data Link Control Protocols
82(7)
3.7.1 High-level Data Link Control
83(3)
3.7.1.1 HDLC Frame Format
84(1)
3.7.1.2 Control Field Format
85(1)
3.7.2 Point-to-Point Protocol
86(6)
3.7.2.1 PPP Components
87(1)
3.7.2.2 PPP Frame Format
87(1)
3.7.2.3 PPP Link Control
88(1)
3.8 Summary
89(2)
4 Multiple Access Schemes 91(14)
4.1 Introduction
91(1)
4.2 Multiplexing Schemes Revisited
92(1)
4.2.1 FDM
93(1)
4.2.2 TDM
93(1)
4.2.3 CDM
93(1)
4.3 Orthogonal Access Schemes
93(3)
4.3.1 FDMA
94(1)
4.3.2 TDMA
94(1)
4.3.3 CDMA
95(1)
4.4 Controlled Access Schemes
96(1)
4.4.1 Centralized Polling
96(1)
4.4.2 Token Passing
96(1)
4.4.3 Service Policies
96(1)
4.5 Random Access Schemes
97(5)
4.5.1 Aloha System
97(1)
4.5.2 Slotted Aloha
98(1)
4.5.3 CSMA
98(1)
4.5.4 CSMA/CD
99(3)
4.5.4.1 Why Listen While Transmitting in CSMA/CD
100(2)
4.5.5 CSMA/CA
102(1)
4.6 Summary
102(3)
5 Local Area Networks 105(32)
5.1 Introduction
105(1)
5.2 Ethernet
105(10)
5.2.1 Ethernet Frame Structure
106(1)
5.2.2 IEEE 802.3 LAN Types
107(1)
5.2.3 Ethernet Topologies
108(2)
5.2.4 LAN Switching
110(1)
5.2.5 Classification of Ethernet Switching
111(1)
5.2.6 Frame Forwarding Methods
112(1)
5.2.6.1 Store-and-Forward Switching
112(1)
5.2.6.2 Cut-Through Switching
113(1)
5.2.6.3 Fragment-Free Switching
113(1)
5.2.7 Highest Layer used for Forwarding
113(2)
5.2.7.1 Layer 2 Switching
114(1)
5.2.7.2 Layer 3 Switching
114(1)
5.2.7.3 Layer 4 Switching
115(1)
5.3 Virtual LANs
115(7)
5.3.1 Advantages of VLANs
115(2)
5.3.2 Types of VLANs
117(3)
5.3.2.1 Port-Based VLAN
117(1)
5.3.2.2 MAC Address-Based VLAN
118(1)
5.3.2.3 Protocol-Based VLANs
119(1)
5.3.3 VLAN Tagging
120(1)
5.3.4 Comments
121(1)
5.4 Gigabit Ethernet
122(1)
5.4.1 Frame Bursting
123(1)
5.5 Wireless LANs
123(6)
5.5.1 IEEE 802.11b WLAN
125(1)
5.5.2 IEEE 802.11a WLAN
125(1)
5.5.3 IEEE 802.11g WLAN
125(1)
5.5.4 Architecture of the IEEE 802.11 WLAN
126(1)
5.5.5 Ad Hoc Mode Deployment
126(1)
5.5.6 Infrastructure Mode Deployment
126(1)
5.5.7 IEEE 802.11 WLAN Timers
127(1)
5.5.8 IEEE 802.11 WLAN Operation
127(1)
5.5.9 DCF Mechanism
128(1)
5.5.10 PCF Mechanism
128(1)
5.5.11 Range and Data Rate Comparison in the PCF Environment
129(1)
5.6 Token Ring Network
129(5)
5.6.1 Token Frame Fields
130(1)
5.6.2 Token-Passing Access Method
130(1)
5.6.3 Data/Command Frame Fields
131(1)
5.6.4 Token Access Priority
132(1)
5.6.5 Logical and Physical Implementation
133(1)
5.7 Summary
134(3)
6 Network Layer Part I-IP Addressing 137(22)
6.1 Introduction
137(1)
6.2 IP Address
137(2)
6.3 Maximum Transmission Unit
139(1)
6.4 IP Version 4 Addressing
140(3)
6.4.1 Class A IPv4 Addresses
141(1)
6.4.2 Class B IPv4 Addresses
141(1)
6.4.3 Class C IPv4 Addresses
142(1)
6.4.4 Class D IPv4 Addresses
142(1)
6.4.5 Class E IPv4 Addresses
142(1)
6.5 IP Subnetting
143(2)
6.6 Variable Length Subnet Mask Networks
145(2)
6.7 IP Quality of Service
147(2)
6.8 Operation of the Explicit Congestion Notification
149(1)
6.9 Address Resolution Protocol
149(3)
6.9.1 Source and Sink in Same LAN
150(1)
6.9.2 Source and Sink in Different LANs: Proxy ARP
150(1)
6.9.3 Source and Sink in Different Remote LANs
151(1)
6.10 Dealing with Shortage of IPv4 Addresses
152(2)
6.10.1 Private Internets
152(1)
6.10.2 Network Address Translation
153(1)
6.10.3 Classless Inter-Domain Routing
153(1)
6.11 IPv6
154(3)
6.11.1 IPv6 Header
156(1)
6.11.2 Concept of Flexible Addressing in IPv6
157(1)
6.12 Summary
157(2)
7 Network Layer Part II-Routing 159(28)
7.1 Introduction
159(1)
7.2 Routing Principle
159(1)
7.3 Routing Algorithms
159(1)
7.4 Static Versus Dynamic Routing
160(1)
7.5 Link-State Versus Distance-Vector Routing
160(1)
7.6 Flat Versus Hierarchical Routing
161(1)
7.7 Host-Based Versus Router-Intelligent Routing
161(1)
7.8 Centralized Versus Distributed Routing
162(1)
7.9 Routing Metrics
162(2)
7.9.1 Path Length
163(1)
7.9.2 Reliability
163(1)
7.9.3 Delay
163(1)
7.9.4 Bandwidth
163(1)
7.9.5 Load
164(1)
7.9.6 Communication Cost
164(1)
7.10 Flooding Algorithm
164(1)
7.11 Distance-Vector Routing Algorithms
164(1)
7.12 Link-State Routing Algorithms
165(1)
7.13 Routing Protocols
166(2)
7.14 Routing Information Protocol
168(1)
7.15 Routing Information Protocol Version 2
168(1)
7.16 Open Shortest Path First Protocol
169(3)
7.16.1 OSPF Routing Hierarchy
169(1)
7.16.2 OSPF Routers
169(1)
7.16.3 OSPF Routing
170(1)
7.16.4 Maintaining the Topological Database
171(1)
7.17 Advantages of OSPF Over RIP
172(1)
7.18 The Dijkstra's Algorithm
172(4)
7.19 Multicast Routing
176(1)
7.20 Types of Multicast Systems
177(1)
7.21 Host-Router Signaling
177(1)
7.22 Multicast Routing Protocols
178(3)
7.22.1 Opt-In Protocols
179(1)
7.22.2 Opt-Out Protocols
180(1)
7.22.3 Source-Based Tree Protocols
180(1)
7.22.4 Shared Tree Protocols
180(1)
7.23 Multicast Forwarding
181(2)
7.24 Summary
183(4)
8 Transport Layer-TCP and UDP 187(22)
8.1 Introduction
187(2)
8.2 TCP Basics
189(4)
8.2.1 TCP Ports
189(1)
8.2.2 TCP Sockets
190(1)
8.2.3 TCP Segment Format
191(2)
8.3 How TCP Works
193(3)
8.3.1 TCP Connection Establishment
193(1)
8.3.2 TCP Connection Release
194(1)
8.3.3 TCP Connection Management
195(1)
8.4 TCP Flow Control
196(7)
8.4.1 Slow Start
198(2)
8.4.2 Congestion Avoidance
200(1)
8.4.3 Fast Retransmit
201(1)
8.4.4 Fast Recovery
202(1)
8.5 TCP and Explicit Congestion Notification
203(2)
8.6 The SYN Flood DoS Attach
205(1)
8.7 UDP
206(2)
8.8 Summary
208(1)
9 Transport Layer-SCTP and DCCP 209(20)
9.1 Introduction
209(1)
9.2 Stream Control Transmission Protocol
209(9)
9.2.1 Motivation for a New Transport Protocol
210(1)
9.2.2 Illustration of the HOL Blocking
211(1)
9.2.3 Summary of Features of SCTP
211(1)
9.2.4 SCTP Packet
212(1)
9.2.5 SCTP Header
212(1)
9.2.6 Association Establishment
213(1)
9.2.7 Four-Way Handshake and the SYN Flood DoS Attach
214(1)
9.2.8 Multihoming
214(2)
9.2.9 Multistreaming
216(1)
9.2.10 SCTP Graceful Shutdown Feature
217(1)
9.2.11 Selective Acknowledgments
218(1)
9.3 Datagram Congestion Control Protocol
218(7)
9.3.1 DCCP Packet Structure
219(2)
9.3.2 DCCP Connection
221(2)
9.3.3 DCCP Congestion Management
223(7)
9.3.3.1 CCID 2-TCP-Like Congestion Control
224(1)
9.3.3.2 CCID 3-TCP Friendly Rate Control
224(1)
9.4 Summary
225(4)
10 Application Layer Services 229(14)
10.1 Introduction
229(1)
10.2 Dynamic Host Configuration Protocol
230(3)
10.2.1 DHCP Basics
230(1)
10.2.2 Discovery Phase
231(1)
10.2.3 Offer Phase
231(1)
10.2.4 Request Phase
231(1)
10.2.5 Acknowledgment Phase
232(1)
10.2.6 Example of Configuration Process Timeline
232(1)
10.2.7 Address Lease Time
232(1)
10.2.8 Static Addresses
233(1)
10.3 Domain Name System
233(8)
10.3.1 Structure of the DNS
234(2)
10.3.2 DNS Queries
236(1)
10.3.3 Name-to-Address Resolution Process
237(1)
10.3.4 DNS Zones
238(1)
10.3.5 DNS Zone Updates
239(1)
10.3.5.1 Full Zone Transfer
239(1)
10.3.5.2 Incremental Zone Transfer
239(1)
10.3.5.3 Notify
240(1)
10.3.6 Dynamic Update
240(1)
10.3.7 Root Servers
241(1)
10.4 Summary
241(2)
11 Introduction to Mobile Communication Networks 243(34)
11.1 Introduction
243(1)
11.2 Radio Communication Basics
243(1)
11.3 Model of Radio Communication System
244(2)
11.4 Radio Wave Propagation
246(4)
11.4.1 Free-Space Propagation
246(1)
11.4.2 Reflection
247(1)
11.4.3 Diffraction
248(1)
11.4.4 Scattering
249(1)
11.5 Multipath Fading
250(2)
11.6 Introduction to Cellular Communication
252(4)
11.6.1 Frequency Reuse
252(1)
11.6.2 Cellular System Architecture
253(3)
11.7 Clusters and Frequency Reuse
256(2)
11.8 Co-Channel Interference
258(1)
11.9 Cell Splitting
258(1)
11.10 Introduction to Mobile Cellular Networks
258(1)
11.11 Mobile Cellular Network Architecture
259(1)
11.12 Mobility Management: Handoff
260(1)
11.12.1 Handoff Schemes
261(1)
11.12.2 Hard Handoff versus Soft Handoff
261(1)
11.13 Generations of Mobile Communication Networks
261(13)
11.13.1 First-Generation Networks
262(1)
11.13.2 Second-Generation Networks
262(1)
11.13.3 Introduction to the GSM Network
263(2)
11.13.4 GSM Channels
265(1)
11.13.5 Power Control
266(1)
11.13.6 Overview of IS-136 TDMA Networks
266(1)
11.13.7 Overview of IS-95 CDMA Networks
266(3)
11.13.8 Third-Generation Networks
269(1)
11.13.9 Fourth-Generation Networks
270(1)
11.13.10 Fifth-Generation Networks
271(3)
11.14 A Note on Internet-of-Things
274(1)
11.15 Summary
274(3)
12 Introduction to Network Security 277(18)
12.1 Introduction
277(1)
12.2 Types of Network Attacks
277(3)
12.3 Security Services
280(1)
12.4 Data Encryption Terminology
281(1)
12.5 Cryptographic Systems
281(2)
12.5.1 Symmetric Cryptosystems
281(1)
12.5.2 Public-Key Cryptosystems
281(1)
12.5.3 Comparing Symmetric and Public-Key Cryptosystems
282(1)
12.5.4 A Hybrid Encryption Scheme
283(1)
12.6 Technical Summary of Public-Key Cryptography
283(6)
12.6.1 Introduction to Number Theory
283(1)
12.6.2 Congruences
284(1)
12.6.3 The Square and Multiply Algorithm
284(1)
12.6.4 Euclid's Algorithm
285(1)
12.6.5 Extended Euclid's Algorithm
286(1)
12.6.6 Euler's Phi Function (Euler's Totient Function)
287(1)
12.6.7 The RSA Algorithm
287(2)
12.7 Digital Signatures
289(2)
12.7.1 Generating a Digital Signature
289(1)
12.7.2 Verifying a Digital Signature
290(1)
12.8 IP Security Protocols
291(3)
12.8.1 IPSec Modes
291(1)
12.8.2 Security Association
292(1)
12.8.3 Authentication Header
292(1)
12.8.4 Encapsulating Security Payload
292(1)
12.8.5 Key Distribution
293(1)
12.9 Summary
294(1)
Bibliography 295(2)
Index 297
OLIVER C. IBE, ScD, is a Professor of Electrical Engineering and the Associate Dean of Engineering for Undergraduate Studies at the University of Massachusetts, Lowell, Massachusetts, USA. He has sixteen years of experience in the telecommunication industry including stints as Chief Technology Officer and cofounder of Sineria Networks, and the Director of Network Architecture at both Spike Broadband Systems and Adaptive Broadband Corporation. Dr. Ibe has published numerous books on the subjects of telecommunication technologies and applied probability.