Muutke küpsiste eelistusi

E-raamat: Fundamentals of Fiber Lasers and Fiber Amplifiers

  • Formaat - EPUB+DRM
  • Hind: 196,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Encompassing a broad range of material from laser physics fundamentals to state-of-the-art research, to industrial applications in the rapidly growing field of quantum electronics, this book covers fundamental aspects of fiber lasers and fiber amplifiers.

This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. This expanded and updated new edition includes substantial new material on nonlinear frequency conversion and Raman fiber lasers and amplifiers, as well as an expanded list of references inclusive of the recent literature in the field.  

Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn the basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, the main operational laser regimes, and will receive practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. 

The book will be useful for students, researchers, and professional physicists and engineers who work with lasers in the optical and telecommunications field, as well as those in the chemical and biological industries.

1 Introduction
1(8)
References
5(4)
2 Optica] Properties and Optical Spectroscopy of Rare Earth Ions in Solids
9(22)
2.1 Electron--Phonon Coupling in Solids
9(2)
2.2 Phonon Sidebands of Optical Transition in Solids
11(2)
2.3 Optical Center Transitions: Spontaneous and Stimulated Emission
13(2)
2.4 Rare Earth Centers in Solids
15(1)
2.5 Homogeneous and Inhomogeneous Line Broadening
16(4)
2.5.1 Homogeneous Broadening
17(2)
2.5.2 Inhomogeneous Broadening
19(1)
2.6 Spectroscopic Parameters of the Optical Transition: A Brief Introduction to the Main Theories
20(6)
2.6.1 Judd-Ofelt Theory
20(2)
2.6.2 McCumber Theory
22(2)
2.6.3 Fuchtbauer--Ladenburg Theory and Einstein Coefficients
24(2)
2.7 Sensitization of Laser-Active Centers
26(2)
References
28(3)
3 Physical and Optical Properties of Laser Glass
31(10)
3.1 Mechanical and Thermal Properties of Glass
33(1)
3.2 Optical Properties of Fibers (Attenuation)
34(2)
3.2.1 Intrinsic Glass Material Properties
34(1)
3.2.2 Waveguide Properties
35(1)
3.2.3 Optical Connection Loss
36(1)
3.3 Different Glass Types Used in Fiber Lasers and Amplifiers
36(4)
3.3.1 Silicate Glass
37(1)
3.3.2 Phosphate Glass
38(1)
3.3.3 Tellurite Glass
38(1)
3.3.4 Fluoride Glass and ZBLAN
39(1)
References
40(1)
4 Fiber Fabrication and High-Quality Glasses for Gain Fibers
41(6)
4.1 Materials
41(1)
4.2 Fabrication of Fiber Preforms
41(2)
4.3 Fiber Fabrication from the Preform
43(1)
4.4 Laser-Active Fiber Fabrication
44(1)
4.5 MCVD Technology for Rare-Earth Doped Fiber Production...
44(2)
4.6 DND Technology
46(1)
References
46(1)
5 Spectroscopic Properties of Nd3+-, Yb3+-, Er3+-, and Tm3+-Doped Fibers
47(22)
5.1 Spectroscopic Notations
47(1)
5.2 Energy Levels of Trivalent Rare Earth Ions
48(2)
5.3 Neodymium
50(4)
5.3.1 Nd3+ Fiber Laser Challenges
53(1)
5.4 Ytterbium
54(3)
5.4.1 Yb3+ Fiber Laser Challenges
55(2)
5.5 Erbium
57(5)
5.5.1 Et3* Fiber Laser Challenges
61(1)
5.6 Thulium
62(5)
5.6.1 Tm3+ Fiber Laser Challenges
64(3)
References
67(2)
6 Propagation of Light and Modes in Optical Fibers
69(14)
6.1 V Number of the Fiber
70(2)
6.2 Fiber Dispersion
72(5)
6.3 Polarization-Maintaining Fibers
77(1)
6.4 Laser Beam Quality (M2 Parameter)
77(5)
6.4.1 Practical Recommendations on Beam Quality Measurements Using the M2 Approach
80(2)
References
82(1)
7 Fiber Laser Physics Fundamentals
83(22)
7.1 Population Inversion: Three- and Four-Energy-Level Systems
83(3)
7.1.1 Four-Level Laser Operational Scheme
84(1)
7.1.2 Three-Level Laser Operational Scheme
85(1)
7.2 Optical Fiber Amplifiers
86(10)
7.2.1 Fiber Amplifier (General Consideration)
86(10)
7.3 Fiber Laser Thresholds and Efficiency
96(2)
7.4 Gain and Loss in Laser Resonators
98(1)
7.5 Fiber Laser Resonators
98(6)
7.5.1 Linear Laser Resonators
99(3)
7.5.2 Ring Laser Resonators
102(2)
References
104(1)
8 Main Operating Regimes of Fiber Lasers
105(40)
8.1 Temporal Regimes
105(20)
8.1.1 CW and Free-Running Operation of Fiber Lasers
107(2)
8.1.2 Q-Switched Operation of Fiber Lasers
109(7)
8.1.3 Mode-Locking of Fiber Lasers
116(9)
8.2 Spectral Regimes
125(17)
8.2.1 Wavelength-Tunable Lasers
125(9)
8.2.2 Single Longitudinal Mode Lasers
134(8)
References
142(3)
9 Main Optical Components for Fiber Laser/Amplifier Design
145(30)
9.1 Laser Diodes
145(17)
9.1.1 Principles of Operation
145(8)
9.1.2 Main Types of Diode Lasers Used in Fiber Laser Technology
153(3)
9.1.3 High-Power Diode Lasers
156(4)
9.1.4 Fiber-Coupled Diode Lasers
160(2)
9.2 Fiber-Coupled Polarization-Maintained and Non-polarization-Maintained Optical Components
162(10)
9.2.1 Polarization-Dependent Optical Isolators
165(1)
9.2.2 Polarization-Independent Optical Isolators
166(1)
9.2.3 High-Power Fiber-Coupled Isolators
167(1)
9.2.4 Polarization-Dependent Circulator
168(1)
9.2.5 Polarization-Independent Circulator
168(2)
9.2.6 Chirped FBG as a Self-Phase Modulation Compensator
170(1)
9.2.7 A Few Words About Fiber End-Face Preparation
171(1)
References
172(3)
10 High-Power Fiber Lasers
175(52)
10.1 Gain Fiber Pumping Technology for High-Power Fiber Lasers
177(1)
10.2 Double-Clad Fibers and Clad-Pumping Technology
178(5)
10.2.1 Clad-Pumping Schemes
179(2)
10.2.2 Clad-Pumping and Triple-Clad Fibers
181(1)
10.2.3 Free Space
182(1)
10.2.4 Fused-Pump Combiners
182(1)
10.3 Large-Mode Area Fibers for High-Power, Diffraction-Limited Operation
183(2)
10.4 Nonlinear Processes in Optical Fibers and their Role in Fiber Laser and Fiber Amplifiers Technology Development
185(15)
10.4.1 Threshold Power of the Stimulated Scattering Process
188(1)
10.4.2 Stimulated Raman Scattering
188(2)
10.4.3 Continuous-Wave SRS
190(1)
10.4.4 Pulsed SRS
191(1)
10.4.5 Stimulated Brillouin Scattering
192(1)
10.4.6 Continuous-Wave SBS
193(2)
10.4.7 Pulsed SBS
195(1)
10.4.8 Optical Kerr Effect
195(1)
10.4.9 Self-Phase Modulation
196(1)
10.4.10 Cross-Phase Modulation
197(1)
10.4.11 Four-Wave Mixing
198(2)
10.5 Self-Focusing and Self-Trapping in Optical Fibers
200(2)
10.6 High-Power Fiber Laser Oscillators Versus Low-Power Master Oscillator-Power Fiber Amplifier Geometry
202(9)
10.6.1 High-Power Fiber Laser Single Oscillators
203(1)
10.6.2 High-Power Master Oscillator-Power Fiber Amplifiers
204(7)
10.7 Beam Combining of High-Power Fiber Lasers
211(11)
10.7.1 Spectral Beam Combining
212(1)
10.7.2 Volume Holographic Grating
213(2)
10.7.3 Coherent Beam Combining
215(7)
References
222(5)
11 Industrial Applications of Fiber Lasers
227(24)
11.1 Laser-Material Interaction for Material Processing
229(1)
11.2 Important Laser Parameters for Industrial Application
230(4)
11.2.1 Wavelength
231(1)
11.2.2 Pulse Energy
231(1)
11.2.3 Pulse Width and Pulse Repetition Rate
231(1)
11.2.4 Power
232(1)
11.2.5 Power Density
232(1)
11.2.6 Laser Beam Quality
233(1)
11.2.7 Spot Diameter
233(1)
11.3 Fiber-Optic Power Delivery Systems
234(9)
11.4 Main Structure of Fiber-Optic Delivery Systems
243(1)
11.5 Main Industrial Applications of Fiber Lasers
244(6)
11.5.1 Welding
244(1)
11.5.2 Cutting
245(1)
11.5.3 Drilling
245(1)
11.5.4 Soldering
245(1)
11.5.5 Marking
245(1)
11.5.6 Heat Treating
246(1)
11.5.7 Metal Deposition
246(1)
11.5.8 Paint Stripping and Surface Removal
246(1)
11.5.9 Micromachining
247(1)
11.5.10 Semiconductor Processing with a Laser Beam
247(1)
11.5.11 Main Competitors of Fiber Lasers in Industrial Laser Applications
248(1)
11.5.12 Summary of Challenges for Fiber Lasers in Industrial Applications
249(1)
11.5.13 Future of Fiber Lasers in Material Processing
249(1)
References
250(1)
12 Nonlinear Frequency Conversion
251(58)
12.1 Introduction to Nonlinear Optics
251(12)
12.1.1 Maxwell Equations
251(5)
12.1.2 Polarization and Susceptibility
256(1)
12.1.3 Wave Equation in Nonlinear Optics (Nonlinear Polarization)
257(2)
12.1.4 Properties of the Nonlinear Susceptibilities
259(4)
12.2 Phase-Matching Conditions
263(16)
12.2.1 Birefringence and Critical Phase-Matching
263(7)
12.2.2 Walk-Off, Angular, Spectral and Temperature Acceptance
270(7)
12.2.3 Quasi Phase-Matching
277(2)
12.3 Nonlinear Frequency Conversion Efficiency
279(10)
12.3.1 Second Harmonic Generation (SHG)
279(4)
12.3.2 Three-Frequency Interaction
283(6)
12.4 Fiber Lasers with Nonlinear Frequency Conversion
289(18)
12.4.1 Continuous Wave Fiber Lasers with Nonlinear Frequency Conversion
289(1)
12.4.2 High Peak Power Fiber MOP As with Frequency Conversion
290(2)
12.4.3 Q-Switched Fiber Lasers with Nonlinear Frequency Conversion
292(4)
12.4.4 Mode-Locked Fiber Lasers with Nonlinear Frequency Conversion
296(6)
12.4.5 Raman Fiber Lasers
302(5)
References
307(2)
13 Conclusion
309(2)
Index 311
Vartan (Valerii) Ter-Mikirtychev received his MSc and PhD with honors in optics and laser physics from the Moscow Engineering Physics Institute (MEPhI) in Moscow, Russia, in 1990 and 1994, respectively. His PhD thesis focused on the development of tunable solid-state lasers, passive Q-switches, and optical spectroscopy of condensed matter and was performed at the A. M. Prokhorov General Physics Institute (GPI) of the Russian Academy of Sciences, Moscow, Russia. He then received a research fellowship from the Japanese government and spent 5 years working at the Kyoto Sangyo University in Kyoto, Japan. Since 1999, he has been working in the United States in the laser and optical industries, including advanced R&D groups at Spectra-Physics Lasers, Inc. and Thermo Fisher Scientific, Inc, developing solid-state and fiber lasers targeting many applications from medical, military, optical communication to green house gasses detection. Between 2013 and 2014 he was a part-time teaching professor in the Department of Physics and Astronomy of San Jose State University in San Jose, California. Currently he is a laser engineering manager at Coherent, Inc. His present field of interest includes laser physics and technology, semiconductor lasers, fiber optics and fiber lasers, free-space optical systems, nonlinear optics, and optical spectroscopy of laser materials. Dr. Ter-Mikirtychev's publication record includes numerous papers in peer-reviewed technical journals including review papers, as well as presentations at international conferences. He has served as the editor of the SPIE Milestone Book on Selected Papers on Tunable Solid-State Lasers, published by SPIE Press in 2002. Dr.Ter-Mikirtychev is a member of the Optical Society of America and currently works for Coherent, Inc.