Muutke küpsiste eelistusi

E-raamat: Fundamentals of Ground Radar for Air Traffic Control Engineers and Technicians

  • Formaat: PDF+DRM
  • Sari: Radar, Sonar and Navigation
  • Ilmumisaeg: 01-Mar-2013
  • Kirjastus: SciTech Publishing Inc
  • Keel: eng
  • ISBN-13: 9781613531365
  • Formaat - PDF+DRM
  • Hind: 240,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Radar, Sonar and Navigation
  • Ilmumisaeg: 01-Mar-2013
  • Kirjastus: SciTech Publishing Inc
  • Keel: eng
  • ISBN-13: 9781613531365

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This text/reference offers a visual approach to moving target indication (MTI), moving target detection (MTD), and Air Traffic Control Radar Beacon systems, illustrating concepts, relationships, and processes with b&w illustrations, photos, and images, including illustrations of oscilloscope and spectrum analyzer displays, on every page. Early chapters cover radar's history, the role of the professional radar engineer/technician, and the science behind radar. Later chapters cover circuitry and hardware, secondary radar systems, microwave transmission, radar transmitters and receivers, the Doppler effect, and radar displays. Mathematical explanations rely only on basic trigonometric concepts, keeping the information accessible to those new to the field. Each chapter contains a wealth of review questions and briefly explained answers. Other learning features are a 35-page annotated, illustrated glossary, and 10 pages of reference appendices on equations, conversions, government nomenclatures, radar frequencies, and trigonometry. The book's readership includes Federal Aviation Administration (FAA) and military air traffic control engineers, maintenance technicians, and students. Bouwman has 51 years of experience in radar systems in the US Air Force and as an FAA Academy instructor. Annotation ©2009 Book News, Inc., Portland, OR (booknews.com)
List of Illustrations
xxiii
Preface xxxiii
Acknowledgements xxxv
Radar's Rich History and Development
1(16)
The Basic Physical Science
1(1)
Propagation of Electrical Waves
1(1)
Inventions in Early Radio Communications
2(1)
Radiolocation
2(1)
Pulsed Radar
2(1)
The Cathode Ray Tube
3(1)
Radar Developments from 1930 through 1940
3(1)
Microwave Radar and ``The Greatest Shipment''
4(1)
The Pearl Harbor Surprise Attack
4(1)
The Reflex Klystron
5(1)
The Explosion of Radar Science in World War II
5(1)
Electronic Countermeasures and Aircraft Identification
6(1)
The Landing Radar
7(2)
The Berlin Airlift
9(1)
GCA and Civilian Air Traffic Control
9(1)
Other Air Traffic Control Radars
10(1)
Ground-Controlled Intercept (GCI) Radar Systems
10(1)
Air Route Surveillance Radar (ARSR)
10(1)
The Joint-Use ARSR Program
10(2)
Airport Surface Detection Equipment (ASDE)
12(2)
Review Questions
14(1)
Answers to Review Questions
15(2)
The Professional Radar Engineer/Technician
17(8)
``Professional''
17(1)
Radar Technicians in World War II
17(1)
The Korean War
18(1)
The Post-Korean Period
18(1)
The Division of Professions
18(1)
The Scientific Approach
18(2)
Webster's Dictionary Definition of ``Scientific''
20(1)
Observing the Electronic Event in Question
20(1)
Using Standard Language
20(1)
Guesswork
20(1)
Making Up Your Own Stories
20(1)
Ego Versus Truth
20(1)
Mathematics and Radar
21(1)
Talents Required of the Radar Technician
21(1)
Professional Responsibility
22(1)
Review Questions
23(1)
Answers to Review Questions
24(1)
Logarithms, DeciBels, and Power
25(8)
The DeciBel
25(1)
Logarithms
25(1)
DeciBels to Express Gain or Attenuation
25(1)
Expression of Power in dBW or dBm
26(1)
Using dBm or dBW in Combination with dB
27(1)
Mental Approximations
27(1)
Actual Attenuation of Devices
28(1)
Peak and Average Power Measurement
28(1)
Half-Power and 70% Amplitude
29(1)
Decibels in Voltage (dBV)
29(1)
Review Questions
30(1)
Answers to Review Questions
31(2)
The Science Behind Radar
33(20)
Introduction
33(1)
Echo Time
33(1)
Synchronization
33(1)
Displaying the Received Echoes
34(1)
Deadtime
34(1)
Summary of the Basic Radar Principle
35(1)
Repetition Rate and Period
36(1)
Radar Detection Range
36(1)
The Antenna Radiation Pattern (Beam)
37(1)
The Isotopic Source Reference
37(2)
The Antenna Gain (Gt)
39(1)
Aperture
39(1)
Attenuation of the Echo
39(1)
Receiver Sensitivity (Pr(min))
39(2)
Radar Maximum Range
41(1)
12 dB per Octave Curves
42(1)
Other Methods for Ground Clutter Reduction
43(1)
Mitigations to the Range Equation
44(1)
CHIRP
44(1)
Diplexed Transmitters
45(2)
Rmax and stc in Secondary Radars
47(1)
Rmax Inversely Proportional to Transmitter Frequency
47(1)
More Forms of CHIRP
47(2)
Review Questions
49(1)
Answers to Review Questions
50(3)
Magnetron versus Synthesis
53(10)
Synthesis System Block Diagram
53(1)
Stalo-Coho-Transmitter Phase Relationships
54(1)
The Transmitter Burst
55(1)
Phase Detection
55(1)
The MTI Canceler
55(1)
The Magnetron System
56(1)
Coherence
56(1)
Automatic Frequency Control (afc)
57(1)
Radar System Frequencies, Applications, and Ranges
58(1)
Component Size versus the Applied Voltage
58(1)
Receiver Bandwidth and Range Resolution
59(1)
Doppler Shift
59(1)
Spectrum and Interference
59(1)
Radar Type Designations
59(1)
New Band Designation
60(1)
Review Questions
61(1)
Answers to Review Questions
62(1)
Circuitry and Hardware
63(34)
A Generic System
63(1)
Other Types
63(1)
Data Processing
63(1)
The Coherent Oscillator (Coho)
64(1)
Countdown Circuitry
65(1)
The Range Cell Counter
65(1)
The Timing Programmed Read-Only Memory (PROM)
65(1)
The Stagger Circuitry and PROM
65(1)
The Modulator Trigger
65(1)
Danger!
65(1)
The Transmitter Modulator
66(1)
The Pulse Transformer
66(1)
The Filament Power Supply
66(2)
The Charging Diode
68(1)
The High-Voltage Power Supply
68(1)
The Switch
68(1)
The ASR-8 Magnetic Modulator
69(1)
The Power Klystron Tube
69(1)
The Exciter and rf Driver
70(1)
The Duplexer
70(1)
The Four-Port Circulator
70(1)
Directional Coupler
71(1)
The Waveguide Switch
71(1)
Three Modes of a Radar Channel
72(1)
The Antenna
72(1)
The Azimuth Pulse Generator (apg)
73(1)
Aligning the apg
73(1)
Newer 16, 384-ACP Generators
73(1)
The Rotary Joint
74(1)
Antenna Polarization and Control
74(1)
The Basic Principle of Circular Polarization
74(1)
Active and Passive Feedhorns
75(1)
The T-R Device
75(1)
The stc Module
76(1)
The Beam Switch
77(1)
The Preselector Filter
77(1)
The Low-Noise Amplifier (lna)
77(1)
The Crystal Mixer
78(1)
The Preamplifier
78(1)
The Stalo
78(1)
The i-f Amplifiers
79(1)
The Normal i-f Amplifier
79(1)
Fast Time Constant (ftc)
80(1)
The Logarithmic i-f Amplifier
80(1)
The MTI i-f
81(2)
Quadrature Phase Detection
83(1)
The MTI Analog-to-Digital (A/D) Converter
83(1)
The MTI Processor
84(1)
The Enhancer
84(1)
The Log and Normal Receiver Processing
85(1)
Differentiating ftc
85(1)
IAGC and Soft Limiting
86(1)
Constant False Alarm Rate (CFAR)
86(1)
Delay-Line ftc
87(1)
The Destagger Circuitry
87(1)
Normal A/D and Enhancer
88(1)
The Digital-to-Analog Converters
88(1)
The Line Drivers
89(1)
The Digitizer
89(3)
Review Questions
92(2)
Answers to Review Questions
94(3)
Secondary Radar Systems
97(46)
General
97(1)
Secondary Radar is Essential Safety Equipment
97(1)
Advantages and Disadvantages of Secondary Radar
97(1)
Dangers in Excessive Reliance
97(1)
Evolution of the Technology
98(1)
The First Generation
98(1)
The Second Generation
98(1)
The Third Generation
98(1)
The Fourth Generation
98(2)
ARTS Data Processing
100(1)
Data Processing at an ARTCC
100(1)
Data Utilization and Processing
101(1)
Code Validation
102(1)
The Fifth Generation
102(1)
ARTCRBS Interrogator Basics
102(1)
Basic ATCRBS Interrogator Principle
102(2)
Detection Probability
104(1)
Interrogation
104(1)
Challenge/Interrogation Modes
104(1)
Evolution of the Challenge/Interrogation
105(1)
Traffic Collision Avoidance System (TCAS), MSSR, and Mode S
105(1)
Mode 4 Challenge
105(1)
Mode 4 Reply
106(1)
MSSR Basic Interrogator-Receiver Concepts
106(1)
General
106(1)
Basic Concepts
106(1)
Transmitter
106(2)
Mode S Interrogation
108(1)
All Call
108(1)
Roll Call
108(1)
Uplink P6 Contents
108(1)
Receipt by the Transponder
109(1)
P5 Pulse/Burst
109(1)
ATCRBS Mode Interlace
109(1)
Interlace with Mode S
109(1)
Interlace Pattern Determined by Antenna Rotation Rate
109(1)
Interlace versus Azimuth
110(1)
Reply Codes
110(1)
Conventional ATCRBS Reply Codes
110(1)
Original A-B Code Train
110(1)
``Discrete'' Codes
111(1)
Octal Numbering
111(1)
Civil and Military Idents
112(1)
Mode S Reply Codes
112(1)
Altitude Codes
112(1)
Adjusting for Barometric Pressure
112(1)
Matching the Display of Primary and Secondary Radar
113(1)
Timing Relationships
113(1)
Radar Mile Remains 12.3552 μs
113(1)
Real-Time P3-to-``Main Bang'' Timing Relationship
114(1)
Timing Error Alarms
114(1)
Measuring ``Reinforcement Rate''
114(1)
The Interrogator Transmitter and Antenna System
115(1)
Side-Lobe Suppression (SLS) and Improved Side-Lobe Suppression (ISLS)
116(1)
SLS and MSSR
117(1)
Receive Side-Lobe Suppression (RSLS)
117(1)
ATCBI-3 Hardware Transmitter Block Diagram
117(2)
The Receiver
119(1)
STC/GTC
119(1)
Code Train Data Processing
120(1)
Decoders
121(1)
Non-common Decoders
121(1)
Fourth-Generation Processing
122(1)
Fourth-Generation Digital Data Processing
122(1)
Delay Lines Replaced by Shift Registers
122(1)
Multiple Code Extractors
123(1)
Identifying the Interrogation Mode and Azimuth
124(1)
More about the Beacon Azimuth Sliding Window
124(1)
Final Data Display
125(1)
Beacon Reply and Mode Pair Reconstitution
125(1)
Interaction between Code Trains
125(1)
Interference and Fruit
126(1)
Range Ambiguities (Second-Time Replies)
126(1)
Test Equipment
127(1)
Special Test Equipment
127(1)
Graphic User Interfaces (GUIs)
127(1)
Test Equipment Evolution
127(1)
Sliding-Window Detection
127(1)
Deficiencies in the Beacon Azimuth Sliding Window
128(1)
Monopulse Transponder Detection
128(1)
History of Dipole Arrays
129(1)
Phasing the Dipoles (or Slots)
129(1)
Beam Control by Frequency Agility
130(1)
Fire-Control Secondary Radar
130(1)
Monopulse by Amplitude
131(1)
FAA Monopulse Antennas
131(2)
LVA Array
133(1)
Beacon Monopulse Operation
133(1)
General
133(1)
Receiver Side-Lobe Suppression
133(1)
Rotational Rate
134(1)
An MSSR Receiver and Processing System
134(1)
Phase Detector
134(1)
Off-Boresight Calculation
135(1)
Monopulse by Phase Difference or Doppler (Interferometry)
135(1)
Multiple Facilities and Coordination
135(5)
Review Questions
140(1)
Answers to Review Questions
141(2)
Microwave Transmission Lines and Cavities
143(34)
Origin of this
Chapter
143(1)
Introduction
143(1)
The Beginning
143(1)
Need to Know
143(1)
Waveguides: Guided and Unguided Electromagnetic Waves
144(1)
Propagation on Wires and in Space
144(1)
Electromagnetic Waves in Space
144(1)
First Discoveries
144(1)
Waveguides versus RF Lines
145(1)
Advantages of Waveguides
145(1)
Disadvantages of Waveguide
146(1)
Waveguide Theory and the Two Analogies
146(1)
Waveguide as Compared to a Two-Wire rf Line
146(1)
Effect of Different Frequencies on a Waveguide
147(1)
Electromagnetic Fields in a Waveguide
148(1)
The Electric Field
148(1)
The Magnetic Field
149(2)
Waveguide Propagation by Electric Waves
151(2)
Path of Wavefronts in a Waveguide
153(1)
The Wavefront Crossing Angle
153(2)
Numbering System of the Modes
155(1)
Rectangular Waveguides
155(1)
Circular Waveguides
155(1)
Counting Wavelengths for Measuring Modes
155(1)
Introducing Fields into a Waveguide
156(1)
Excitation with Electric Fields
156(1)
Excitation with a Magnetic Field
157(1)
Excitation with Electromagnetic Fields
158(1)
Bends, Twists, Joints, and Terminations
158(1)
Bends
158(1)
Rotating the Field
159(1)
Joints
159(1)
Rotary Joints
160(1)
T-Junctions
161(1)
The ATR Switch
161(2)
Matching Devices
163(1)
Terminating a Waveguide
163(1)
Cavity Resonators
164(1)
The Fields in a Cavity
165(1)
Cavity Excitation
166(1)
Tuning the Cavity
166(1)
Uses of Cavities
167(3)
Waveguide Test Equipment
170(1)
The Early Frequency Meter
170(1)
The Slotted Line
171(1)
The Directional Coupler
171(4)
Review Questions
175(1)
Answers to Review Questions
176(1)
Radar Synchronizers
177(18)
Introduction
177(1)
The Master Trigger Blocking Oscillator
177(1)
The Automatic Temporal Control
178(1)
Regulation by Phantastron
178(1)
The Circulating Trigger Loop
178(1)
Digital MTI and Elimination of the Delay Line
179(1)
Analog-to-Digital Conversion of the Bipolar Video
179(1)
Basic Timing
180(1)
Range-Cell Clock Rate
180(1)
Timing Events Within the Range Cell
181(1)
Timing Circuitry Block Diagram
181(1)
Range Cells versus Shift Register Stages
181(1)
Range Cell and Trigger Synchronization
182(1)
The Basic Unstaggered fp Generator
182(1)
fp Adjustment
182(1)
Staggered fp
183(1)
Digital Timing in Magnetron Systems
183(1)
MTD System Timing
183(1)
Preface and Introduction
183(1)
Azimuth Data and the Synchronizer
184(1)
The Coherent Processing Interval Pair (CPIP)
184(1)
The Single-Board Computer
185(1)
Computer Hardware
185(1)
Brief Description of Computer Components
185(1)
Program Counter
185(1)
Basic Input/Output System (BIOS)
186(1)
Nonvolatile RAM (NVRAM)
186(1)
Instruction Repertoire
186(1)
Program Execution
186(1)
Interrupts
186(1)
Interrupt Priorities
186(1)
Status Registers
186(1)
Interrupt Tabling
187(1)
Watchdog Timer
187(1)
The ASR-9 Timing Scheme
187(1)
CPIP Azimuth
187(1)
The MTD Front End
187(1)
CPIP and fp Stagger
188(1)
Complexities Introduced by the CPIP Process
188(1)
Calculation and Example of ASR-9 Average fp
188(1)
Synchronizers in Redundant Radar Channels
189(1)
Interference between Channels
190(1)
Review Questions
191(1)
Answers to Review Questions
192(3)
Radar Transmitters
195(50)
Introduction
195(1)
Compressed High-Resolution Pulse (CHIRP) Transmitters
195(1)
Modulation
196(1)
Carrier and Intelligence
196(1)
Linear versus Nonlinear Devices
196(1)
Modulation Creates Harmonics
196(1)
Frequency Mixing
197(1)
Modulation Percentage
197(1)
Pulse Modulation
197(1)
Combining Harmonics to Form a Pulse
198(1)
The sin x/x Amplitude Wave
198(1)
Calculation of the Harmonic Resultant at Pulse Center
199(1)
Calculation of the Amplitude of a Single Harmonic
200(1)
Harmonic Frequency at the Crossover
201(1)
Number of Harmonics in a Radar Pulse
201(1)
The Actual Transmitter Spectrum
201(1)
The Spectrum Analyzer
202(1)
Spectrum Analyzer Functional Description
203(1)
The i-f Amplifier and Resolution Bandwidth
203(2)
Sweep Speed versus Resolution Bandwidth
205(1)
The Display
205(1)
Common Uses
206(1)
Video Bandwidth
206(1)
Fourier Transforms
206(1)
The Klystron Power Amplifier
207(1)
General
207(1)
Construction
207(1)
The Electron Gun
207(1)
The Input Cavity
208(1)
The Intermediate Cavity
209(1)
The Output Cavity
209(1)
The Collector
209(1)
Drive Power
209(1)
Body, Collector, and Beam Current
210(1)
Self-excitation
210(1)
The Ion Pump
210(1)
Radiation Hazard
211(1)
Additional Cavities
211(1)
Tuning
211(2)
Drive Pulse Timing
213(1)
Klystron Interlock Circuits
213(1)
Out-of-Band Filters
213(1)
The Magnetron
214(1)
A Predecessor, the Reflex Klystron
214(1)
Application by MIT Radiation Laboratories
214(1)
Physical Construction
214(1)
The ``Bottle'' Analogy
214(2)
Underlying Principles
216(1)
Effect of a Magnetic Field on an Electron in Motion
216(1)
Circular Electron Travel in a Uniform Magnetic Field
216(1)
Magnetic Fields
216(3)
The Cycloid
219(1)
Formation of Synchronous Electron Clouds
219(2)
Modes of Operation
221(1)
Strapping
221(1)
Performance Characteristics
221(1)
The Amplitron, aka Crossed-Field Amplifier
222(1)
The Modulator
223(1)
Requirements
224(1)
Fundamental Pulse Modulator Principle
224(1)
The ASR-4, ASR-5, and ASR-6, as an Example
225(1)
Interlocks
225(1)
The High-Voltage Power Supply
226(1)
The Charging Chokes and Diode
226(1)
Charging the pfn to Twice the HVPS Voltage
226(1)
The Hydrogen Thyratron
226(1)
The Modulator Driver
226(1)
Discharging the Pulse-Forming Network
227(1)
Magnetron Filament Circuit
227(1)
Test Points
227(1)
Real and Artificial Transmission Lines
227(1)
Real Transmission Lines
227(1)
Common Transmission Line Characteristics
228(1)
Signal Propagation on a Transmission Line
228(1)
Temporal Delay
229(1)
Frequencies above fx and Reactance
229(1)
Artificial Transmission Lines
230(1)
Charging the Line Capacitance
230(1)
Termination RL
231(1)
Reflection at the Sending End of the Line
232(1)
Wave Computations
232(1)
Discharging the Line
233(1)
Forming the Modulator Pulse
234(1)
Pulse Shape
234(1)
The Pulse Transformer
235(1)
Reflections
235(1)
Calculating the First Discharge Wave
235(1)
Inductive Charging
235(1)
Other Modulator Types
236(2)
Review Questions
238(2)
Review Answers
240(5)
Radar Receivers
245(32)
Amplifying the Echo
245(1)
The Limitation by Noise
245(1)
Bandwidth Requirement of the Receiver
245(1)
mds Measurement
246(1)
``Tangential'' mds
246(1)
Noise Figure
246(1)
Noise Figure in DeciBels
247(1)
Signal-to-Noise Ratio Degradation
247(1)
Overall Noise Figure Ft
248(1)
The Parametric Amplifier (Paramp)
249(1)
Effective Noise Temperature
249(1)
Noise Figure Monitoring
250(1)
Antenna Noise and Solar Strobes
250(1)
The Superheterodyne Receiver
251(1)
The Low-Noise Amplifier and Preselector Filter
251(1)
Double Conversion
251(1)
Multiple i-f Amplifiers
252(1)
Phase Detection
252(1)
Quadrature Phase Detectors
253(1)
The First Detector/Signal Mixer
253(1)
The Detector Crystal
254(1)
The Double-Balanced Mixer
254(1)
Mixer Current
255(1)
Fault Indications
255(1)
The Local Oscillator
255(1)
The Swept-Bandpass afc
256(1)
Sweeping the Bandpass
257(1)
Search Operation
257(1)
Track Operation
258(1)
Adjustment
258(1)
Discriminator-Type afc
258(1)
i-f Amplifiers
259(1)
The Normal i-f Amplifier
259(1)
Normal i-f Ancillary Circuits
260(1)
Special Features
260(1)
Special Uses
260(1)
Testing and Alignment
260(1)
The Logarithmic i-f Amplifier
260(1)
Test Procedures
261(1)
The MTI i-f Amplifier
261(1)
Performance Testing
262(1)
Adjustments
262(1)
Video Output
263(1)
The MTD i-f Amplifier (ASR-9)
263(1)
Adjustments
264(1)
Gain and Bandpass Testing
264(4)
Markers
268(1)
General Rules
268(1)
Gain Testing
269(1)
Review Questions
270(2)
Answers to Review Questions
272(5)
Moving Target Indicators and the Doppler Effect
277(48)
Introduction
277(1)
The Frequency and Time Domains
277(1)
Christian Doppler
277(1)
Upward Doppler Shift
277(1)
Downward Doppler Shift
278(1)
Basic Doppler Equation
278(1)
``Apparent Doppler''
278(1)
Radial Velocity
278(1)
Radar Doppler Shift
279(1)
Radar Doppler Equation with Transmitter Frequency
279(1)
Bidirectional Wave Travel and Speed of Light
279(1)
Speed of Light in Nautical Miles per Hour
280(1)
Incorporating the Radial Velocity Calculation
280(1)
The Tangential Effect
280(1)
The Doppler Effect and Phase Detection
280(1)
First and Second Phase Detectors
281(1)
Phase-Detector Response
282(1)
Phase Response of the Signal Mixer
282(1)
The Phase-Detector Operation
282(1)
Comparing Different Frequencies in a Synchronous Phase Detector
283(2)
Doppler Shift Representation at the Phase-Detector Output
285(1)
The Doppler Effect in Pulsed Systems
286(1)
The Echo-Marking Approach
286(1)
The Identical Doppler Effect in c-w and Pulsed Echoes
287(1)
Synthesis System Block Diagram, Incorporating the MTI Principle
287(1)
Cancellation
288(1)
The Difference between Radar Doppler and Tr-to-Tr Echo Phase Change
288(1)
The ``Butterfly''
289(1)
Blind and Optimum Velocities
289(1)
Blind Velocity Calculation
289(1)
Blind Velocity and Staggered fp
290(1)
Optimum Velocity Calculation
291(1)
The Blind Phase Effect
291(1)
Quadrature Phase Detectors
291(1)
The Triangular Phase-Detector Response
292(1)
The Velocity Response Shape
292(1)
Improvement to the Velocity Response Shape
292(2)
Cascaded Cancelers and Feedback
294(1)
Bipolar and Unipolar Velocity Response Shapes
294(1)
Sweeping the Canceler with Audio
295(2)
Mathematical Relationships from the Velocity Response Shape
297(1)
Finding Δφ from fD and fp
297(1)
Finding the Δφ from Vr, fxmtr, and fp
297(1)
Finding the Δφ from Aircraft Course, Radar Bearing, fp, and fxmtr
297(1)
Tr-Tr Radial Target Movement
297(1)
The MTI Reflector
298(1)
The Magnetron MTI System
298(1)
Achieving Coherence
299(1)
Summary of Magnetron Coherence
300(1)
Magnetron System Maintenance Techniques
301(1)
The Locked Test Pulse Generator
302(1)
i-f Test Pulse Generators in Synthesis Systems
303(1)
The Composite Video Test Target Generator
303(1)
Live Video
304(1)
Output Limiting
304(1)
Complex Doppler Echoes and Subclutter Visibility
305(1)
Simultaneous Multiple Dopplers
305(1)
i-f Limiting for a Consistent Phase-Detector Response
306(1)
Echo Phase ``Pulling,'' Competition, and Resultant
306(1)
Those Phase-Detector Outputs Variable with Signal Power
307(1)
Optimum i-f Amplifier Adjustment
308(1)
Payoff Adjustment Procedure
308(1)
Maximum i-f Gain
309(1)
Clutter Strength Photographs
310(1)
Subclutter-Visibility Measurement
310(1)
Echo Box SCV Procedure
310(2)
The Passive High-Beam Receiver System
312(1)
Isolating Performance Derogation
312(1)
Poor Cancellation
312(1)
Echo-Box Cancellation Ratio
312(1)
Video Cancellation Ratio
313(1)
Echo-Box Ratio Poor, Video Cancellation Ratio is Satisfactory
313(1)
i-f Cancellation Ratio
313(1)
Causes of Cancellation Failures
314(1)
Further Implications of the Velocity Response
315(1)
Doppler Ambiguity
315(1)
Increasing the fp Decreases Antenna Scanning Residue
315(1)
Range Ambiguities, Magnetron versus Synthesis
315(1)
Different fps Provide Different Blind Velocities
316(1)
Staggered fps and Canceler Velocity Response
316(1)
MTI and Weather
317(1)
The SSR/DMTI Modification for Early ARSR and FPS Series Radars
317(1)
Current (``Soft'') Limiting in the MTI i-f Amplifier
317(1)
Multiple Staggered fp
317(1)
Four-Pulse Canceler
317(3)
Review Questions
320(2)
Answers to Review Questions
322(3)
An MTI Processor
325(22)
Introduction
325(1)
Timing
325(1)
Circuitry to the Canceler Input
325(1)
The MTI Video Conditioner
325(1)
The Swept Audio Generator
325(1)
The Ramp Generator
325(1)
The Quantizers
326(3)
The Digital Canceler
329(1)
Data Steering
329(1)
Feedback Scaling
329(1)
Hardwired Right and Left Shifting
329(1)
Greater Detail, Dual Canceler Operation
330(1)
The Input Register
330(1)
The Feedback Adder and Limiter
330(1)
The One-Tr Data-Delay Path
330(2)
Staggered fp and Canceler Operation
332(1)
The Canceler ``Subtracter'' Circuit
332(1)
Canceler 1 to Canceler 2
332(1)
Feedback Modes
333(1)
The Register and Bipolar-to-Unipolar Converter
334(1)
The Canceler Output
335(1)
Canceler Testing and Troubleshooting
335(1)
Post-Cancellation Circuits
336(1)
The Quadrature Combine
336(1)
Logarithmic Scaler and ftc Circuit
336(1)
Log Conversion
337(1)
ftc Operation
337(2)
The ``Hole Filler''
339(1)
The Normalization and Antilog Circuitry
339(3)
The Enhancer
342(1)
Review Questions
343(1)
Answers to Review Questions
344(3)
The Moving Target Detector MTI System
347(38)
MTD Definition
347(1)
Improvement over Canceler-Type MTI
347(1)
General Description
347(1)
The Original Analog Range-Gated Doppler Filters
348(1)
An Overview of the MTD System
349(1)
Timing Scheme
349(1)
The i-f Amplifier and Phase Detectors
350(1)
The Analog-to-Digital Converter
350(2)
Memory and Filter Bank
352(1)
Power Combiner (Rectangular-Coordinate Converter)
352(1)
The Target and Two-Level Detector
352(1)
The Postprocessor
353(2)
Rectangular Coordinate Data Input
355(1)
The Input Data Buffer
355(1)
The General Math Unit
356(1)
The Filter Arithmetic Units
357(2)
The Accumulated Product
359(1)
The Filter Data Message
360(1)
The Power Combiner
361(1)
The Target and Two-Level Weather Detector
361(1)
The Mean-Level Threshold (MLT) Cards
361(1)
Improved Detection in Weather
362(1)
Primitive Detector Number 1 (PD1)
363(2)
Clutter Map and Clutter Map Control Card
365(1)
Primitive Detector No 2 (PD2)
365(1)
The Geocensor Map
365(3)
The Primitive Formatter Card
368(1)
The C&I Formatter Card
368(1)
The Weather Data
369(1)
The F1 Control Card
369(1)
The Two-Level Weather Detector
370(1)
The Characteristics of Weather Echoes
370(1)
Weather Level Detection and MTI
371(1)
Selecting Normal or MTI Inputs for the Two-Level Weather Detector
371(1)
Two-Level Weather Detector Operation
371(1)
The Postprocessor and MTD Software
371(1)
Primary Radar Data Inputs
371(2)
Secondary (Beacon) Data Inputs
373(1)
The C&I Software Module
373(1)
Centroiding
373(1)
Quality and Confidence Ranking
374(1)
rf Interference (rfi) Testing
374(1)
The Second Adaptive Threshold Map
374(1)
Track Eligibility
375(1)
Performance Observation
375(1)
Second Adaptive Map Maintenance Display
375(2)
The Target Performance Window
377(1)
Appearance of the MTI Reflector
377(1)
Azimuth Alignment
378(1)
The Surveillance Processor (SP)
379(1)
Two-Level Weather Smoothing and Contouring
379(1)
The Message Interface
380(1)
Review Questions
381(1)
Answers to Review Questions
382(3)
Radar Displays
385(44)
Preface
385(1)
General
385(1)
Electromagnetic and Electrostatic Deflection
385(1)
The Three Dimensions
386(1)
Display Types
386(1)
The A-Type Display
386(1)
Real Time
387(1)
The J-Type Display
387(1)
The B-Type Display
387(1)
The C-Type Display
388(1)
The E-Type Display
388(1)
The G-Type Display
389(1)
The P-Type Display
389(1)
Variations of Type P Displays
389(1)
The Random-Access ppi (rappi)
390(1)
Scan Conversion
390(1)
Preface
390(1)
Radar Television Displays
390(1)
Radar Bright Display Equipment (RBDE)
391(1)
Storage Tube
392(1)
Bright Radar Intensity Television Equipment (BRITE)
392(1)
Synthetic Real-Time ppi Displays
392(1)
Reconstituting Real Time
393(1)
Basic Operation of the ppi
393(1)
General
393(2)
The Electromagnetic Cathode Ray Tube (crt)
395(1)
The Electron Gun
395(1)
The Phosphor(s)
395(1)
Cathode Ray Tube Hazards
396(1)
The Focus and Deflection Coils
396(1)
The Sweep Generator Circuit
397(1)
The Phantastron
397(1)
Ramp Generation by a Binary Counter
398(1)
Sweep and Unblanking Gates
398(1)
Timing
398(1)
Overscan Limit
399(1)
The Sweep Generator and Driver
400(1)
The Video Amplifier
400(1)
The Evolution of Azimuth Data
401(1)
Basic Synchro System
401(1)
Increasing Torque
402(1)
Hybrid Systems
403(1)
The Trigonometric Identity, sin2θ + cos2θ = 1
404(1)
Fixed-Coil Deflection
405(1)
Creating the sin-cos Modulation
406(1)
Digital Azimuth Data
407(1)
One Stored Curve can Produce All Sine and Cosine Data
408(1)
Alphanumeric Display
408(1)
``Accelerating'' Real Time
408(2)
Other Uses of the Azimuth Counter
410(2)
Arithmetic Calculations to Convert Azimuth Data
412(1)
Azimuth Alignment
412(1)
Sweep Modulator Circuitry Operated by sin-cos Information
413(1)
ppi Display Phenomena
413(1)
Range Resolution
413(1)
Azimuth Resolution
414(1)
Summary of Digital Deflection
414(1)
Selected Azimuth Data
414(1)
Range Expansion or Minor Deflection
414(1)
Baseline Control
414(1)
Display Circularity
414(2)
The ``Slant Range'' Effect
416(1)
Range-Ambiguous (Second-Time) Targets
416(1)
Second-Time Weather
416(1)
The Video ``Mapper''
416(1)
Alignment
417(1)
Timing
418(1)
Orthogonality
418(1)
Focus
418(1)
Digital Maps
418(1)
Digital Scan Conversion
418(1)
Conventional Sine and Cosine Azimuth Data
418(1)
Octants, Tangents, and Cotangents
419(2)
One Tangent Curve in Storage
421(1)
Selecting the Pixels to be Written
421(1)
Timing, Real-Time Storage, and Television Reading
421(1)
Trails
421(1)
Alphanumeric Operation
422(1)
The ASR-9 Surveillance Communications Interface Processor (SCIP)
422(1)
Message Data Transfer
422(1)
SCIP Block Diagram
422(3)
Synthetic Real-Time Beacon Mode Pair and Code Trains
425(1)
Weather Data
425(1)
Review Questions
426(1)
Answers to Review Questions
427(2)
Appendix A Annotated Glossary 429(36)
Appendix B Major Equations 465(4)
Appendix C Conversions and Constants 469(2)
Appendix D Government Nomenclatures 471(1)
Appendix E Radar Frequencies 472(1)
Appendix F Greek Alphabet in Radar 473(1)
Appendix G Technical Expression 474(2)
Appendix H Trigonometry 476
Ronald D. Bouwman has amassed 51 years of experience in radar systems. He began his career in air traffic control radar in the United States Air Force as a ground control approach radar repairman. He continued in the field, holding various positions including picket-ship electronics technician on the Atlantic Missile Range, Titan I Missile System ground electronics installation technician, FAA radar technician, senior publications engineer at ITT Gilfillan, FAA technician and technical expert, FAA Academy radar instructor, FAA field office manager, and FAA Academy contract instructor. Ronald has maintained a variety of interests throughout his life, including artistic work, writing, and mechanical and electrical device technology.