Muutke küpsiste eelistusi

E-raamat: Fundamentals of III-V Semiconductor MOSFETs

Edited by , Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-Mar-2010
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781441915474
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-Mar-2010
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781441915474
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's (such as SiO2 on Si), high-k oxides are the natural choice of dielectrics for III-V MOSFETs. The key challenge of the III-V MOSFET technology is a high-quality, thermodynamically stable gate dielectric that passivates the interface states, similar to SiO2 on Si. Several chapters give a detailed description of materials science and electronic behavior of various dielectrics and related interfaces, as well as physics of fabricated devices and MOSFET fabrication technologies. Topics also include recent progress and understanding of various materials systems; specific issues for electrical measurement of gate stacks and FETs with low and wide bandgap channels and high interface trap density; possible paths of integration of different semiconductor materials on Si platform.

None
Non-Silicon MOSFET Technology: A Long Time Coming
1(6)
Jerry M. Woodall
Introduction
1(1)
Brief and Non-Comprehensive History of the NSMOSFET
2(1)
Surface Fermi Level Pinning: The Bane of NSMOSFET Technology Development
3(3)
Concluding Remarks
6(1)
References
6(1)
Properties and Trade-Offs of Compound Semiconductor MOSFETs
7(24)
Tejas Krishnamohan
Donghyun Kim
Krishna C. Saraswat
Introduction
7(3)
Simulation Framework
10(5)
Power-Performance Tradeoffs in Binary III-V Materials (GaAs, InAs, InP and InSb) vs. Si and Ge
15(4)
Power-Performance of Strained Ternary III-V Material (Inx Ga1-xAs)
19(3)
Strained III-V for p-MOSFETs
22(2)
Novel Device Structure and Parasitics
24(3)
Conclusion
27(1)
References
27(4)
Device Physics and Performance Potential of III-V Field-Effect Transistors
31(20)
Yang Liu
Himadri S. Pal
Mark S. Lundstrom
Dae-Hyun Kim
Jesus A. del Alamo
Dimitri A. Antoniadis
Introduction
31(1)
InGaAs HEMTs
32(4)
Discussion
36(10)
Conclusions
46(1)
References
47(4)
Theory of HfO2-Based High-k Dielectric Gate Stacks
51(42)
Alexander A. Demkov
Xuhui Luo
Onise Sharia
Introduction
51(1)
Theoretical Background
52(5)
Properties of Bulk Hafnia and Zirconia
57(14)
Surfaces
71(10)
Band Alignment at Hafnia Interfaces
81(8)
Conclusions
89(1)
References
89(4)
Density Functional Theory Simulations of High-k Oxides on III-V Semiconductors
93(38)
Evgueni A. Chagarov
Andrew C. Kummel
Introduction
93(3)
Methodology of DFT Simulations of High-k Oxides on Semiconductor Substrates
96(10)
DFT Simulations of High-k Oxides on Si/Ge Substrates
106(6)
Generation of Amorphous High-k Oxide Samples by Hybrid Classical-DFT Molecular Dynamics Computer Simulations
112(6)
The Current Progress in DFT Simulations of High-k Oxide/III-V Semiconductor Stacks
118(8)
Summary
126(1)
References
126(5)
Interfacial Chemistry of Oxides on III-V Compound Semiconductors
131(42)
Marko Milojevic
Christopher L. Hinkle
Eric M. Vogel
Robert M. Wallace
Introduction
131(1)
Surfaces of III-V MOSFET Semiconductor Candidates
132(6)
Oxide Formation (Native and Thermal)
138(8)
Oxide Deposition on III-V Substrates
146(10)
Electrical Behavior of Oxides on III-V and Interfacial Chemistry
156(9)
Conclusions
165(1)
References
165(8)
Atomic-Layer Deposited High-k/III-V Metal-Oxide-Semiconductor Devices and Correlated Empirical Model
173(22)
Peide D. Ye
Yi Xuan
Yanqing Wu
Min Xu
Introduction
173(1)
History and Current Status
174(4)
Empirical Model for III-V MOS Interfaces
178(3)
Experiments on High-k/III-V MOSFETs
181(7)
Conclusion
188(1)
References
189(6)
Materials and Technologies for III-V MOSFETs
195(56)
Serge Oktyabrsky
Yoshio Nishi
Sergei Koveshnikov
Wei-E Wang
Niti Goel
Wilman Tsai
Introduction
195(1)
III-V HEMTs for Digital Applications
196(11)
Challenges for III-V MOSFETs
207(1)
Mobility in Buried Quantum Well Channel
208(2)
Interface Passivation Technologies
210(27)
Summary
237(1)
References
238(13)
InGaAs, Ge, and GaN Metal-Oxide-Semiconductor Devices with High-k Dielectrics for Science and Technology Beyond Si CMOS
251(34)
M. Hong
J. Kwo
T. D. Lin
M. L. Huang
W. C. Lee
P. Chang
Introduction
251(2)
Material Growth, Device Fabrication, and Measurement
253(2)
Devices
255(11)
Interfacial Chemical Properties
266(2)
Energy-Band Parameters
268(4)
Thickness Scalability of Ga2O3(Gd2O3) on InGaAs with Low Dit, Low Leakage Currents, and High-Temperature Thermodynamic Stability
272(2)
Interface Trap Densities and Efficiency of Fermi-Level Movement
274(5)
Conclusion
279(1)
References
280(5)
Sub-100 nm Gate III-V MOSFET for Digital Applications
285(22)
K. Y. (Norman) Cheng
Milton Feng
Donald Cheng
Chichih Liao
Introduction
285(1)
MOSFET Figures of Merit for Digital Applications
286(4)
Selection of III-V Channel Materials
290(4)
Self-Aligned III-V MOSFET Structures
294(5)
Benchmark of III-V FET with Si CMOS
299(3)
Outlook and Conclusions
302(1)
References
303(4)
Electrical and Material Characteristics of Hafnium Oxide with Silicon Interface Passivation on III-V Substrate for Future Scaled CMOS Technology
307(42)
Injo Ok
Jack C. Lee
Introduction
307(2)
MOSCAPs and MOSFETs on GaAs with Si, SiGe Interface Passivation Layer (IPL)
309(25)
MOSCAPs and MOSFETs on InGaAs with Si IPL
334(8)
MOSCAPs and Self-Aligned n-channel MOSFETs on InP Channel Materials with Si IPL
342(4)
Conclusions
346(1)
References
347(2)
p-type Channel Field-Effect Transistors
349(30)
Serge Oktyabrsky
Introduction
349(2)
Low-Field Hole Mobility in Bulk Semiconductors
351(2)
p-channel: Figures of Merit with Scaling of Channel Length
353(2)
Strained Quantum Wells
355(9)
p-channel HFETs
364(6)
p-type MOSFETs
370(2)
Conclusions
372(1)
References
372(7)
Insulated Gate Nitride-Based Field Effect Transistors
379(44)
M. Shur
G. Simin
S. Rumyantsev
R. Jain
R. Gaska
Introduction
379(2)
Materials Growth and Deposition Technologies
381(8)
Transport Properties
389(6)
Device Design and Fabrication
395(2)
Device Characteristics
397(7)
Non-Ideal Effects and Reliability
404(2)
Applications and Performance
406(8)
Future Trends: From Megawatts to Terahertz
414(2)
References
416(7)
Technology/Circuit Co-Design for III-V FETs
423(20)
Jaydeep P. Kulkarni
Kaushik Roy
Introduction
423(2)
Device/SPICE Models
425(3)
Logic Circuit Analysis
428(7)
Memory Circuit Analysis
435(4)
Application Space of III-V QWFETs
439(1)
Conclusions
439(1)
References
440(3)
Index 443