Muutke küpsiste eelistusi

E-raamat: Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval

  • Formaat: EPUB+DRM
  • Sari: Texts in Computer Science
  • Ilmumisaeg: 25-Jun-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030692513
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Texts in Computer Science
  • Ilmumisaeg: 25-Jun-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030692513
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This unique and useful textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. The coverage spans all aspects of image analysis and understanding, offering deep insights into areas of feature extraction, machine learning, and image retrieval. The theoretical coverage is supported by practical mathematical models and algorithms, utilizing data from real-world examples and experiments. 

 

Topics and features: 

 

  • Describes essential tools for image mining, covering Fourier transforms, Gabor filters, and contemporary wavelet transforms
  • Develops many new exercises (most with MATLAB code and instructions)
  • Includes review summaries at the end of each chapter
  • Analyses state-of-the-art models, algorithms, and procedures for image mining
  • Integrates new sections on pre-processing, discrete cosine transform, and statistical inference and testing
  • Demonstrates how features like color, texture, and shape can be mined or extracted for image representation
  • Applies powerful classification approaches: Bayesian classification, support vector machines, neural networks, and decision trees
  • Implements imaging techniques for indexing, ranking, and presentation, as well as database visualization

 

This easy-to-follow, award-winning book illuminates how concepts from fundamental and advanced mathematics can be applied to solve a broad range of image data mining problems encountered by students and researchers of computer science. Students of mathematics and other scientific disciplines will also benefit from the applications and solutions described in the text, together with the hands-on exercises that enable the reader to gain first-hand experience of computing.

1. Fourier Transform.-
2. Windowed Fourier Transform.-
3. Wavelet
Transform.-
4. Color Feature Extraction.-
5. Texture Feature Extraction.-
6.
Shape Representation.-
7. Bayesian Classification.- Support Vector Machines.-
8. Artificial Neural Networks.-
9. Image Annotation with Decision Trees.-10.
Image Indexing.-
11. Image Ranking.-
12. Image Presentation.-
13. Appendix.
Dr. Dengsheng Zhang is Senior Lecturer in the School of Engineering, Information Technology and Physical Sciences at Federation University Australia and a Guest Professor of Xi'an University of Posts & Telecommunications, China. He is on the list of Top 2% Scientists in the World ranked by Stanford University. Dr Zhang was the Textbook & Academic Authors Associations winner of their 2020 Most Promising New Textbook Award, with the judges noting: 





 





Fundamentals of Image Data Mining provides excellent coverage of current algorithms and techniques in image analysis. It does this using a progression of essential and novel image processing tools that give students an in-depth understanding of how the tools fit together and how to apply them to problems.