Muutke küpsiste eelistusi

E-raamat: Fundamentals of Linear Algebra for Signal Processing

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 03-Jan-2025
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031689154
  • Formaat - EPUB+DRM
  • Hind: 123,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 03-Jan-2025
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031689154

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Signal processing is ubiquitous in many fields of science and engineering. This textbook is tailored specifically for graduate students and presents linear algebra, which is requisite knowledge in these fields, in a form explicitly targeted to signal processing and related disciplines. Written by an experienced author with over 35 years of expertise in signal processing research and teaching, this book provides the necessary foundation in a focused and accessible manner, offering a practical approach to linear algebra without sacrificing rigor. Emphasis is placed on a deeper conceptualization of material specific to signal processing so students may more readily adapt this knowledge to actual problems in the field. Since other emerging areas, such as machine learning, are closely related to signal processing, the book also provides the necessary background in this discipline. The book includes many examples and problems relevant to signal processing, offering explanations and insights that are difficult to find elsewhere.





Fundamentals of Linear Algebra for Signal Processing will allow students to master the essential knowledge of linear algebra for signal processing. It is also an essential guide for researchers and practitioners in biomedical, electrical, chemical engineering, and related disciplines.

Chapter
1. Fundamental Concepts.
Chapter
2. Eigenvalues, Eigenvectors and Correlation.
Chapter
3. The Singular Value Decomposition(SVD).
Chapter
4. The Quadratic Form.
Chapter
5. Gaussian Elimination and Associated Numerical Issues.
Chapter
6. The QR Decomposition.
Chapter
7. Linear Least Squares Estimation.
Chapter
8. The Rank Deficient Least Squares Problem.
Chapter
9. Regularization.
Chapter
10. Toeplitz Systems.

James P. Reilly, Ph.D. , is a Professor Emeritus in the Department of Electrical and Computer Engineering and the School of Biomedical Engineering at McMaster University. He works at the interface of machine learning and signal processing applied to health-related problems, and he has made pioneering contributions to treating and diagnosing psychiatric illnesses and disorders of consciousness. He has 70 refereed publications in top-tier journals, nine patents, and over 90 reviewed conference publications. In his spare time, Prof. Reilly enjoys photography, flying model airplanes, and hiking/biking on the trails near his home in Hamilton, ON.