Muutke küpsiste eelistusi

E-raamat: Fundamentals of Metal Machining and Machine Tools

(University of Rhode Island, Kingston, USA), (Boothroyd Dewhurst Inc., Wakefield, Rhode Island, USA)
  • Formaat: 602 pages
  • Ilmumisaeg: 08-Aug-2019
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781040065075
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 188,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 602 pages
  • Ilmumisaeg: 08-Aug-2019
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781040065075
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Boothroyd and Knight, both affiliated with the industrial and manufacturing engineering department at the University of Rhode Island, emphasize underlying concepts, analytical methods, and economic considerations in this resource for those involved in metal cutting, machine tool technology, and manufacturing processes. Only a basic knowledge of mathematics and physics is assumed. This third edition contains new material on recent advances in areas such as super-hard cutting tool materials, cutting fluid applications, and tool geometries. The series was previously published by Marcel Dekker. Annotation ©2006 Book News, Inc., Portland, OR (booknews.com)

In the more than 15 years since the second edition of Fundamentals of Machining and Machine Tools was published, the industry has seen many changes. Students must keep up with developments in analytical modeling of machining processes, modern cutting tool materials, and how these changes affect the economics of machining. With coverage reflecting state-of-the-art industry practice, Fundamentals of Machining and Machine Tools, Third Edition emphasizes underlying concepts, analytical methods, and economic considerations, requiring only basic mathematics and physics.

This book thoroughly illustrates the causes of various phenomena and their effects on machining practice. The authors include several descriptions of modern analytical methods, outlining the strengths and weaknesses of the various modeling approaches.

What's New in the Third Edition?
  • Recent advances in super-hard cutting tool materials, tool geometries, and surface coatings
  • Advances in high-speed machining and hard machining
  • New trends in cutting fluid applications, including dry and minimum-quantity lubrication machining
  • New developments in tool geometries for chip breaking and chip control
  • Improvements in cost modeling of machining processes, including application to grinding processes

    Supplying abundant examples, illustrations, and homework problems, Fundamentals of Machining and Machine Tools, Third Edition is an ideal textbook for senior undergraduate and graduate students studying metal cutting, machining, machine tool technology, machining applications, and manufacturing processes.
  • Conventions Used in This Book xxvii
    Standardization
    xix
    Introduction to the International (SI) System of Units
    xix
    Chapter 1 Machine Tools and Machining Operations 1(68)
    1.1 Introduction
    1(1)
    1.2 Generating Motions of Machine Tools
    2(3)
    1.3 Machines Using Single-Point Tools
    5(19)
    1.3.1 Engine Lathe (Center Lathe)
    5(2)
    1.3.2 Single-Point Tools
    7(3)
    1.3.3 Typical Lathe Operations
    10(4)
    1.3.4 Work and Tool Holding in an Engine Lathe
    14(2)
    1.3.5 Other Types of Lathes
    16(2)
    1.3.6 Vertical-Boring Machine (Vertical Borer)
    18(1)
    1.3.7 Horizontal-Boring Machine (Horizontal Borer)
    19(1)
    1.3.8 Shaping Machine (Shaper)
    20(3)
    1.3.9 Planing Machine (Planer)
    23(1)
    1.4 Machines Using Multipoint Tools
    24(21)
    1.4.1 Multipoint Tools
    24(1)
    1.4.2 Drilling Machine (Drill Press)
    25(6)
    1.4.3 Horizontal-Milling Machine (Horizontal Miller)
    31(5)
    1.4.4 Vertical-Milling Machine (Vertical Miller)
    36(5)
    1.4.5 Broaching Machine (Broacher)
    41(3)
    1.4.6 Taps and Dies
    44(1)
    1.5 Machines Using Abrasive Wheels
    45(12)
    1.5.1 Abrasive Wheels
    45(1)
    1.5.2 Horizontal-Spindle Surface-Grinding Machine (Horizontal-Spindle Surface Grinder)
    46(3)
    1.5.3 Vertical-Spindle Surface-Grinding Machine (Vertical-Spindle Surface Grinder)
    49(3)
    1.5.4 Cylindrical-Grinding Machine (Cylindrical Grinder)
    52(1)
    1.5.5 Internal-Grinding Machine (Internal Grinder)
    53(2)
    1.5.6 Centerless Grinding Machines
    55(2)
    1.6 Summary of Machine Tool Characteristics and Machining Equations
    57(7)
    Problems
    64(4)
    Reference
    68(1)
    Chapter 2 Mechanics of Metal Cutting 69(52)
    2.1 Introduction
    69(2)
    2.2 Terms and Definitions
    71(2)
    2.3 Chip Formation
    73(5)
    2.3.1 Continuous Chip
    74(2)
    2.3.2 Continuous Chip with Built-up Edge
    76(1)
    2.3.3 Discontinuous Chip
    76(1)
    2.3.4 Other Types of Chip Formation
    77(1)
    2.4 The Forces Acting on the Cutting Tool and Their Measurement
    78(3)
    2.5 Specific Cutting Energy
    81(1)
    2.6 Plowing Force and the "Size Effect"
    82(2)
    2.7 The Apparent Mean Shear Strength of the Work Material
    84(3)
    2.8 Chip Thickness
    87(10)
    2.8.1 Theory of Ernst and Merchant
    88(4)
    2.8.2 Theory of Lee and Shaffer
    92(2)
    2.8.3 Experimental Evidence
    94(3)
    2.9 Friction in Metal Cutting
    97(3)
    2.10 Analytical Modeling of Machining Operations
    100(14)
    2.10.1 Mechanistic Modeling of Machining
    101(1)
    2.10.2 Slip Line Field Analysis
    102(2)
    2.10.3 Predictive Models for Orthogonal Cutting
    104(6)
    2.10.4 Finite Element Analysis
    110(2)
    2.10.5 Modeling of Material Properties
    112(2)
    Problems
    114(3)
    References
    117(4)
    Chapter 3 Temperatures in Metal Cutting 121(20)
    3.1 Heat Generation in Metal Cutting
    121(2)
    3.2 Heat Transfer in a Moving Material
    123(1)
    3.3 Temperature Distribution in Metal Cutting
    124(10)
    3.3.1 Temperatures in the Primary Deformation Zone
    126(1)
    3.3.2 Temperatures in the Secondary Deformation Zone
    127(1)
    3.3.3 Example
    128(5)
    3.3.4 Effect of Cutting Speed on Temperatures
    133(1)
    3.3.5 Prediction of Temperature Distributions in Machining
    133(1)
    3.4 The Measurement of Cutting Temperatures
    134(3)
    3.4.1 Work-Tool Thermocouple
    134(1)
    3.4.2 Direct Thermocouple Measurements
    135(1)
    3.4.3 Radiation Methods
    136(1)
    3.4.4 Hardness and Microstructure Changes in Steel Tools
    137(1)
    Problems
    137(2)
    References
    139(2)
    Chapter 4 Tool Life and Tool Materials 141(34)
    4.1 Introduction
    141(1)
    4.2 Progressive Tool Wear
    141(1)
    4.3 Forms of Wear in Metal Cutting
    142(12)
    4.3.1 Crater Wear
    142(1)
    4.3.2 Flank Wear
    143(1)
    4.3.3 Tool-Life Criteria
    143(1)
    4.3.4 Common Criteria for High-Speed Steel or Ceramic Tools
    144(1)
    4.3.5 Common Criteria for Sintered-Carbide Tools
    145(1)
    4.3.6 Tool Life
    145(3)
    4.3.7 Premature Tool Failure
    148(1)
    4.3.8 The Effect of a Built-up Edge
    148(1)
    4.3.9 The Effect of Tool Angles
    149(2)
    4.3.10 The Effect of Speed and Feed on Cratering and Built-up-Edge Formation
    151(1)
    4.3.11 Tool Damage Models
    152(2)
    4.4 The Tool Material
    154(10)
    4.4.1 Basic Requirements of Tool Materials
    154(1)
    4.4.2 Major Classes of Tool Materials
    155(2)
    4.4.3 High-Speed Steel
    157(1)
    4.4.4 Cast Alloy Tools
    158(1)
    4.4.5 Cemented Carbide Tools
    158(2)
    4.4.6 Cermet Tools
    160(1)
    4.4.7 Ceramic Tools
    160(1)
    4.4.8 Polycrystalline Tools
    161(1)
    4.4.9 Tool Coatings
    162(2)
    4.5 Tool Geometries
    164(1)
    4.6 The Work Material
    165(3)
    4.6.1 Tool Wear and Machinability Testing
    166(1)
    4.6.2 Factors Affecting the Machinability of Metals
    167(1)
    4.7 High Speed Machining
    168(3)
    4.8 Hard Machining
    171(1)
    Problems
    172(1)
    References
    173(2)
    Chapter 5 Cutting Fluids and Surface Roughness 175(36)
    5.1 Cutting Fluids
    175(1)
    5.2 The Action of Coolants
    176(3)
    5.3 The Action of Lubricants
    179(4)
    5.3.1 Boundary Lubrication
    179(1)
    5.3.2 Lubrication in Metal Cutting
    180(1)
    5.3.3 Characteristics of an Efficient Lubricant in Metal Cutting
    181(2)
    5.4 Application of Cutting Fluids
    183(3)
    5.4.1 Manual Application
    185(1)
    5.4.2 Flood Application
    185(1)
    5.4.3 Jet Application
    185(1)
    5.4.4 Mist Application
    185(1)
    5.4.5 Through the Tool Application
    186(1)
    5.5 Cutting Fluid Maintenance
    186(1)
    5.6 Environmental Considerations
    187(1)
    5.7 Disposal of Cutting Fluids
    187(2)
    5.8 Dry Cutting and Minimum Quantity Lubrication
    189(3)
    5.9 Surface Roughness
    192(8)
    5.9.1 Ideal Surface Roughness
    192(3)
    5.9.2 Natural Surface Roughness
    195(3)
    5.9.3 Measurement of Surface Roughness
    198(2)
    5.10 Tool Geometries for Improved Surface Finish
    200(1)
    5.11 Burr Formation in Machining
    200(5)
    Problems
    205(3)
    References
    208(3)
    Chapter 6 Economics of Metal-Cutting Operations 211(38)
    6.1 Introduction
    211(1)
    6.2 Choice of Feed
    212(1)
    6.3 Choice of Cutting Speed
    213(5)
    6.4 Tool Life for Minimum Cost and Minimum Production Time
    218(501)
    6.5 Estimation of Factors Needed to Determine Optimum Conditions
    719
    6.6 Example of a Constant-Cutting-Speed Operation
    221(552)
    6.7 Machining at Maximum Efficiency
    773
    6.8 Facing Operations
    225(503)
    6.9 Operations with Interrupted Cuts
    728
    6.10 Economics of Various Tool Materials and Tool Designs
    230(4)
    6.11 Machinability Data Systems
    234(501)
    6.11.1 Database Systems
    234(500)
    6.11.2 Mathematical Model Systems
    734(1)
    6.12 Limitations of Available Machinability Data
    735
    6.12.1 Feed and Depth of Cut in Turning
    735
    6.12.2 Cutting Speed, Depth of Cut, and Hardness in Turning
    235(3)
    6.12.3 Estimation of Recommended Feed and Speed
    238(1)
    6.12.3.1 Example
    238(1)
    6.12.4 Relationships for Other Turning Processes
    239(4)
    6.12.5 Relationships for Other Machining Processes
    243(1)
    6.12.6 Accuracy of Relationships for Recommended Cutting Conditions
    243(1)
    Problems
    243(4)
    References
    247(2)
    Chapter 7 Nomenclature of Cutting Tools 249(18)
    7.1 Introduction
    249(2)
    7.2 Systems of Cutting-Tool Nomenclature
    251(4)
    7.2.1 British Maximum-Rake System
    251(1)
    7.2.2 American Standards Association System
    252(1)
    7.2.3 German System
    253(2)
    7.3 International Standard
    255(10)
    7.3.1 Tool-in-Hand and Tool-in-Use Systems
    255(4)
    7.3.2 Setting System
    259(1)
    7.3.3 Mathematical Relationships Between Tool and Working Systems
    260(2)
    7.3.4 Example
    262(1)
    7.3.5 Calculation of Tool Angles from Working Angles
    263(2)
    Problems
    265(1)
    References
    265(2)
    Chapter 8 Chip Control 267(16)
    8.1 Introduction
    267(1)
    8.2 Chip Breakers
    267(7)
    8.3 Prediction of Radius of Chip Curvature
    274(3)
    8.4 Prediction of Chip Breaking Performance
    277(3)
    8.5 Tool Wear During Chip Breaking
    280(1)
    Problems
    280(2)
    References
    282(1)
    Chapter 9 Machine Tool Vibrations 283(38)
    9.1 Introduction
    283(1)
    9.2 Forced Vibrations
    284(8)
    9.2.1 Single-Degree-of-Freedom System
    284(5)
    9.2.2 Complex Structures
    289(3)
    9.3 Self-Excited Vibrations (Chatter)
    292(13)
    9.3.1 Interaction of the Cutting Process and Machine Structure
    292(4)
    9.3.1.1 Regenerative Instability
    294(1)
    9.3.1.2 Mode-Coupling Instability
    294(2)
    9.3.2 Stability Charts
    296(1)
    9.3.3 Analysis of Machine Tool Chatter
    297(14)
    9.3.3.1 Cutting Process
    297(2)
    9.3.3.2 Machine Structure
    299(2)
    9.3.3.3 Stability Analysis
    301(1)
    9.3.3.4 Modification for Multiedge Cutting Operations
    302(1)
    9.3.3.5 Special Cases
    303(2)
    9.4 Determination of Frequency Response Loci
    305(5)
    9.5 Dynamic Acceptance Tests for Machine Tools
    310(1)
    9.6 Improving Machine Tool Stability
    311(5)
    9.6.1 Structural Alterations
    311(1)
    9.6.2 Vibration Absorbers
    312(1)
    9.6.3 Modification of the Regenerative Effect
    312(3)
    9.6.3.1 Variable-Pitch Milling Cutters
    312(3)
    9.6.3.2 Superimposed Speed Variation
    315(1)
    9.6.4 Active Force Control
    315(1)
    Problems
    316(3)
    References
    319(2)
    Chapter 10 Grinding 321(38)
    10.1 Introduction
    321(1)
    10.2 The Grinding Wheel
    321(8)
    10.2.1 Grain Type
    323(1)
    10.2.2 Grain Size
    324(1)
    10.2.3 Bond
    324(1)
    10.2.4 Structure
    325(1)
    10.2.5 Designation of Grinding Wheels
    325(4)
    10.3 Effect of Grinding Conditions on Wheel Behavior
    329(2)
    10.4 Determination of the Density of Active Grains
    331(1)
    10.5 Testing of Grinding Wheels
    331(1)
    10.6 Dressing and Truing of Grinding Wheels
    332(1)
    10.7 Analysis of the Grinding Process
    333(12)
    10.7.1 Specific Cutting Energy for Grinding Processes
    337(1)
    10.7.2 Cylindrical Grinding Cycles
    338(2)
    10.7.3 Surface Grinding Cycles
    340(1)
    10.7.4 Equivalent Diameters of Grinding Wheels
    340(2)
    10.7.5 Metal Removal Parameter for Easy-to-Grind Materials
    342(2)
    10.7.6 Example
    344(1)
    10.7.7 Metal Removal Parameter for Difficult-to-Grind Materials
    345(1)
    10.8 Thermal Effects in Grinding
    345(3)
    10.9 Cutting Fluids in Grinding
    348(2)
    10.9.1 General Discussion
    348(1)
    10.9.2 Application of Grinding Fluids
    348(2)
    10.10 Grinding-Wheel Wear
    350(1)
    10.11 Nonconventional Grinding Operations
    351(3)
    10.11.1 High-Speed Grinding
    351(1)
    10.11.2 Creep Feed Grinding
    352(2)
    10.11.3 Low-Stress Grinding
    354(1)
    Problems
    354(2)
    References
    356(3)
    Chapter 11 Manufacturing Systems and Automation 359(42)
    11.1 Introduction
    359(1)
    11.2 Types of Production
    359(1)
    11.2.1 Mass or Continuous Production
    360(1)
    11.2.2 Large-Batch Production
    360(1)
    11.2.3 Small-Batch Production
    360(1)
    11.3 Types of Facilities Layout
    360(2)
    11.3.1 Functional or Process Layout
    360(2)
    11.3.2 Line Layout
    362(1)
    11.3.3 Group or Cellular Layout
    362(1)
    11.4 Types of Automation
    362(2)
    11.4.1 Fixed Automation
    363(1)
    11.4.2 Programmable Automation
    363(1)
    11.4.2.1 Program Sequence Control
    363(1)
    11.4.2.2 Numerical Control
    364(1)
    11.5 Transfer Machines
    364(5)
    11.5.1 Economics of Transfer Machines
    366(2)
    11.5.2 Example
    368(1)
    11.6 Automatic Machines
    369(12)
    11.6.1 Planning for Multi-spindle Automatic Lathes
    370(10)
    11.6.1.1 Process Plan Optimization
    377(3)
    11.6.2 Economics of Automatic Machines
    380(1)
    11.6.3 Example
    381(1)
    11.7 Numerically Controlled (NC) Machine Tools
    381(7)
    11.7.1 Main Features of NC Systems
    381(4)
    11.7.1.1 Program of Instruction
    381(2)
    11.7.1.2 Machine Tool Controller
    383(1)
    11.7.1.3 Machine Tool
    384(1)
    11.7.2 NC Motions
    385(2)
    11.7.2.1 Point-to-Point or Positional Control
    385(1)
    11.7.2.2 Straight-Line or Linear Control
    386(1)
    11.7.2.3 Continuous Path or Contouring Control
    386(1)
    11.7.3 Computers in Numerical Control
    387(1)
    11.7.4 Economics of Numerically Controlled Machines
    387(1)
    11.7.5 Example
    388(1)
    11.8 Comparison of the Economics of Various Automation Systems
    388(1)
    11.9 Handling of Components in Batch Production
    389(1)
    11.10 Flexible Manufacturing Systems
    390(9)
    11.10.1 Machine Tools in FMSs
    395(2)
    11.10.2 Work Handling for FMSs
    397(1)
    11.10.3 Layouts for FMSs
    397(2)
    11.10.4 Tooling in FMSs
    399(1)
    11.10.5 Pallets and Fixtures for FMSs
    399(1)
    Problems
    399(1)
    References
    400(1)
    Chapter 12 Computer-Aided Manufacturing 401(38)
    12.1 Introduction
    401(1)
    12.2 Scope of CAD/CAM
    401(2)
    12.3 Process-Planning Tasks
    403(3)
    12.4 Computer-Aided Process Planning
    406(6)
    12.5 Processing of NC Programs
    412(3)
    12.6 Manual Programming of NC Machines
    415(8)
    12.6.1 Fixed or Canned Cycles
    420(1)
    12.6.2 Tool Path Coordinates
    421(2)
    12.7 Computer-Aided NC Processing
    423(2)
    12.8 Numerical Control Processing Languages
    425(2)
    12.8.1 Input Information Level
    425(1)
    12.8.1.1 Group I
    425(1)
    12.8.1.2 Group II
    426(1)
    12.8.1.3 Group III
    426(1)
    12.8.2 Similarity of Language Structure
    426(1)
    12.8.2.1 Free-Format Languages
    426(1)
    12.8.2.2 Fixed-Format Languages
    426(1)
    12.9 NC Programming Using APT-Based Languages
    427(7)
    12.9.1 Language Structure
    427(1)
    12.9.1.1 Geometric Statements
    427(1)
    12.9.2 Motion Statements
    428(3)
    12.9.3 Auxiliary Statements
    431(1)
    12.9.4 Programming Example in APT
    431(3)
    12.10 Graphics-Based NC Processing Systems
    434(3)
    References
    437(2)
    Chapter 13 Design for Machining 439(66)
    13.1 Introduction
    439(1)
    13.2 Standardization
    440(1)
    13.3 Choice of Work Material
    440(2)
    13.4 Shape of Work Material
    442(2)
    13.5 Shape of Component
    444(21)
    13.5.1 Classification
    444(9)
    13.5.2 Rotational Components [ (L/D) less than or equal to 0.5] 445
    13.5.3 Rotational Components [ 0.5 less than (L/D) less than or equal to 3] 452
    13.5.4 Rotational Components [ (L/D > 31
    453(9)
    13.5.5 Nonrotational Components [ (A/B) less than or equal to 3, (A/C) > or equal to 4] 458
    13.5.6 Nonrotational Components [ (A/B) > 3]
    462(3)
    13.5.7 Nonrotational Components [ (A/B) less than 3, (A/C) less than 4] 462
    13.6 Assembly of Components
    465(1)
    13.7 Accuracy and Surface Finish
    466(5)
    13.8 Summary of Design Guidelines
    471(3)
    13.8.1 Standardization
    472(1)
    13.8.2 Raw Material
    472(1)
    13.8.3 Component Design
    472(2)
    13.8.3.1 General
    472(1)
    13.8.3.2 Rotational Components
    473(1)
    13.8.3.3 Nonrotational Components
    473(1)
    13.8.4 Assembly
    474(1)
    13.8.5 Accuracy and Surface Finish
    474(1)
    13.9 Cost Estimating for Machined Components
    474(27)
    13.9.1 Material Cost
    475(1)
    13.9.2 Machine Loading and Unloading
    475(1)
    13.9.3 Other Nonproductive Costs
    476(1)
    13.9.4 Handling between Machines
    476(2)
    13.9.5 Material Type
    478(1)
    13.9.6 Machining Costs
    478(2)
    13.9.7 Tool Replacement Costs
    480(2)
    13.9.8 Machining Data
    482(3)
    13.9.9 Rough Grinding
    485(3)
    13.9.10 Finish Grinding
    488(1)
    13.9.11 Allowance for Grinding Wheel Wear
    488(3)
    13.9.11.1 Example
    490(1)
    13.9.12 Allowance for Spark-Out
    491(1)
    13.9.13 Examples
    491(2)
    13.9.14 Machining Cost Estimating Worksheet
    493(1)
    13.9.14.1 Example
    493(1)
    13.9.15 Approximate Cost Models for Machined Components
    494(7)
    Problems
    501(2)
    References
    503(2)
    Chapter 14 Nonconventional Machining Processes 505(48)
    14.1 Introduction
    505(1)
    14.2 Range of Nonconventional Machining Processes
    506(1)
    14.3 Ultrasonic Machining
    506(5)
    14.3.1 Transducers
    509(1)
    14.3.1.1 Piezoelectric Transducers
    509(1)
    14.3.1.2 Magnetostrictive Transducers
    509(1)
    14.3.2 Transformer and Tool Holder
    509(1)
    14.3.3 Tools
    510(1)
    14.3.4 Abrasive Slurry
    510(1)
    14.3.5 Applications
    511(1)
    14.4 Water-Jet Machining
    511(3)
    14.4.1 General Discussion
    511(1)
    14.4.2 Applications
    512(2)
    14.5 Abrasive-Jet Machining
    514(2)
    14.5.1 General Discussion
    514(2)
    14.5.2 Applications
    516(1)
    14.6 Chemical Machining
    516(2)
    14.6.1 Etchants
    518(1)
    14.6.2 Applications
    518(1)
    14.7 Electrochemical Machining
    518(6)
    14.7.1 Metal Removal Rates
    520(1)
    14.7.2 Nature of the Machine Surface
    521(1)
    14.7.3 Effect of Tool Feed Speed and Supply Voltage on Accuracy
    521(2)
    14.7.4 Tools for Electrochemical Machining
    523(1)
    14.7.5 Applications
    523(1)
    14.8 Electrolytic Grinding
    524(1)
    14.9 Electrical-Discharge Machining
    525(6)
    14.9.1 Tool Materials and Tool Wear
    527(2)
    14.9.2 Dielectric Fluid
    529(1)
    14.9.3 Process Parameters
    529(2)
    14.9.4 Applications
    531(1)
    14.10 Wire Electrical-Discharge Machining
    531(3)
    14.11 Laser-Beam Machining
    534(7)
    14.11.1 Types of Lasers
    535(1)
    14.11.2 Percussion Drilling of Small Holes
    535(1)
    14.11.3 Trepanning or Cutting Operations
    535(3)
    14.11.4 Applications
    538(3)
    14.12 Electron-Beam Machining
    541(2)
    14.13 Plasma-Arc Cutting
    543(2)
    14.13.1 General Discussion
    543(1)
    14.13.2 Applications
    543(2)
    14.14 Comparative Performance of Cutting Processes
    545(2)
    Problems
    547(3)
    References
    550(3)
    Nomenclature 553(10)
    Index 563


    Winston A. Knight, Geoffrey Boothroyd