Muutke küpsiste eelistusi

E-raamat: Fundamentals of Microelectromechanical Systems (MEMS)

  • Formaat: 416 pages
  • Ilmumisaeg: 14-May-2021
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781264257591
  • Formaat - EPUB+DRM
  • Hind: 112,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 416 pages
  • Ilmumisaeg: 14-May-2021
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781264257591

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.

A complete guide to MEMS engineering, fabrication, and applications

This comprehensive engineering guide shows, step by step, how to incorporate cutting-edge microelectromechanical (MEMS) technology to enable internet-of-things (IoT) and artificial intelligence (AI) functionality in your designs. Written by an experienced educator and microelectronics expert, Fundamentals of Microelectromechanical Systems (MEMS) clearly explains the latest technologies and methods. Real-world examples, illustrations, and in-depth questions and problems reinforce key topics throughout. Readers will also take a look at the future of MEMS in the workforce and explore MEMS research and development.

Coverage includes:

  • Basic microfabrication
  • Micromachining
  • Transduction principles
  • RF and optical MEMS
  • Mechanics and inertial sensors
  • Thin film properties and SAW/BAW sensors
  • Pressure sensors and microphones
  • Piezoelectric films
  • Material properties expressed as tensor
  • Microfluidic systems and BioMEMS
  • Power MEMS
  • Electronic noises, interface circuits, and oscillators




Preface xiii
Introduction xv
1 Basic Microfabrication
1(36)
1.1 Introduction
1(1)
1.2 Photolithography
1(2)
1.2.1 Aerial Image of Contact/Proximity Printing
2(1)
1.2.2 Aerial Image of Projection Printing
2(1)
1.2.3 Photoresist
2(1)
1.3 Thermal Oxidation of Silicon
3(1)
1.3.1 Local Oxidation of Silicon
4(1)
1.4 Silicon Doping
4(2)
1.5 Vacuum Basics
6(2)
1.5.1 Mean Free Path, Impingement Rate, and Pumping Speed
6(1)
1.5.2 Regions of Gas Flow
7(1)
1.6 Thin-Film Depositions
8(9)
1.6.1 Deposition by Evaporation
8(1)
1.6.2 Deposition by Sputtering
9(1)
1.6.3 Chemical Vapor Deposition
9(3)
1.6.4 LPCVD Low-Stress Silicon Nitride
12(3)
1.6.5 Amorphous Silicon, Polysilicon, and Epitaxial Silicon Depositions
15(1)
1.6.6 Atomic Layer Deposition and Atomic Layer Etching
15(2)
1.7 Mass Flow Sensing and Control
17(2)
1.7.1 Flow Control Valve
18(1)
1.8 Electroplating of Metals
19(1)
1.9 Soft Lithography and Its Derivative Technology
20(2)
1.10 Wafer Bonding
22(5)
1.10.1 Direct Bonding between Silicon Wafers
22(2)
1.10.2 Anodic Bonding between Silicon Wafer and Glass Wafer
24(1)
1.10.3 Bonding with Metallic Interlayer
25(1)
1.10.4 Bonding with Insulating Interlayer
25(1)
1.10.5 Bonding Strength Measurement
26(1)
1.11 Flip-Chip Bonding for Electrical Interconnect
27(3)
1.12 Engineered Silicon Substrates
30(1)
References
31(1)
Questions and Problems
32(5)
2 Micromachining
37(54)
2.1 Bulk Micromachining
37(23)
2.1.1 Wet Etchants for Silicon Oxide, Silicon Nitride, Aluminum, and Polysilicon
38(1)
2.1.2 Crystallographic Notations
39(1)
2.1.3 Bulk Micromachining of Silicon
40(4)
2.1.4 Micromacruning in (100) and (110) Silicon Wafers
44(1)
2.1.5 Convex Corner and Beam Undercutting
45(7)
2.1.6 Front-to-Backside Alignment
52(3)
2.1.7 Alignment of Pattern to Crystallographic Axes
55(1)
2.1.8 Isotropic Etching of Silicon for Large Spherical Etch Cavity
55(3)
2.1.9 Etching Apparatus
58(2)
2.2 Surf ace Micromacruning
60(12)
2.2.1 Double-Polysilicon Micromechanical Pin-joint Structures
61(3)
2.2.2 Hinged Plates
64(2)
2.2.3 Step Coverage, Selective Etching of Spacer Layer, and Sealing
66(2)
2.2.4 Stiction of Surface-Micromachined Structures
68(3)
2.2.5 Additional Issues of Surface Micromachining
71(1)
2.2.6 Porous Silicon Micromachining
71(1)
2.3 Dry Micromachining
72(6)
2.3.1 Plasma Etching
72(3)
2.3.2 Reactive Ion Etching
75(1)
2.3.3 Silicon Reactive Ion Etching and Deep Reactive Ion Etching
76(2)
2.3.4 Dry Silicon Etching with XeF2
78(1)
References
78(3)
Questions and Problems
81(10)
3 Transduction Principles
91(48)
3.1 Electrostatic and Capacitive Transduction
91(11)
3.1.1 Electrostatic Comb Drive
91(3)
3.1.2 Electrostatic Micromotors
94(1)
3.1.3 "Pull-in Effect" in Electrostatic Actuation
95(6)
3.1.4 Electrostatic Repulsion Force through Nonvolatile Charge Injection
101(1)
3.1.5 Capacitive Sensing
102(1)
3.2 Electromagnetic Transduction
102(6)
3.2.1 Magnetic Actuation versus Electrostatic Actuation
102(1)
3.2.2 Electromagnetic Actuators
103(4)
3.2.3 Magnetic Field Sensing
107(1)
3.3 Piezoelectric Transduction
108(13)
3.3.1 Piezoelectric Effects
108(6)
3.3.2 Stress and Strain in Piezoelectric Medium
114(3)
3.3.3 Piezoelectric Bimorph
117(1)
3.3.4 Progressive Flexural Wave
118(1)
3.3.5 Ultrasonic Motor
119(2)
3.4 Thermal Transduction
121(6)
3.4.1 Electrothermal Actuation
121(3)
3.4.2 Uncooled Infrared Imaging
124(3)
References
127(1)
Questions and Problems
128(11)
4 RF MEMS
139(60)
4.1 Electromagnetic Wave Spectrum
139(2)
4.2 Silicon Micromechanical Resonator
141(4)
4.2.1 Resonators at 1-10 MHz
141(1)
4.2.2 Filters Based on Silicon Micromechanical Resonators
142(1)
4.2.3 In Pursuit of GHz Silicon Resonators
142(3)
4.3 Acoustic Wave Resonators and Filters
145(36)
4.3.1 Acoustic Wave Resonator Concept
145(1)
4.3.2 Quartz Resonator
146(1)
4.3.3 One-Dimensional Mason's Model for Acoustic Resonator
147(5)
4.3.4 Using Mason's Model for Film Bulk Acoustic Resonator with Multiple Layers
152(5)
4.3.5 Incorporating Acoustic Loss in Mason's Model
157(2)
4.3.6 BVD Equivalent Circuit for Acoustic Resonator
159(7)
4.3.7 Spurious Resonant Modes and Wave Dispersion
166(3)
4.3.8 Film Bulk Acoustic Resonator for RF Front-End Filters
169(12)
4.4 Surface Acoustic Wave Filters
181(3)
4.4.1 SAW Generation by Interdigitated Electrodes over Piezoelectric Substrate
181(2)
4.4.2 SAW Filter Components
183(1)
4.5 Tunable Capacitors
184(5)
4.5.1 Bulk-Micromachined Silicon-Supported Tunable Capacitor with Mass Structure
185(1)
4.5.2 Bridge-Type Surface-Micromachined Tunable Capacitor
186(3)
4.6 RF MEMS Switches
189(2)
References
191(2)
Questions
193(6)
5 Optical MEMS
199(24)
5.1 Micromirror Array for Projection Display
199(10)
5.1.1 Digital Light Processing
199(4)
5.1.2 Grating Light Valve
203(2)
5.1.3 Thin-Film Micromirror Array
205(4)
5.2 Micromirrors for Optical Fiber Communication
209(8)
5.2.1 Mechanical Reflection Optical Switch
210(2)
5.2.2 Fabry-Perot Opto-Mechanical Modulator
212(2)
5.2.3 Fabry-Perot Photonic Crystal, Filter, and Interferometer Built with Bragg Reflectors
214(1)
5.2.4 Micromirrors for Optical Cross-Connect
215(2)
References
217(2)
Questions
219(4)
6 Mechanics and Inertial Sensors
223(58)
6.1 Statics
223(20)
6.1.1 Stress and Strain as Single Indexed Matrix Elements
223(1)
6.1.2 Isotropic Media
224(1)
6.1.3 Bending of Isotropic Cantilever
225(3)
6.1.4 Boundary Conditions
228(3)
6.1.5 Equivalent Spring Constants for Common MEMS Structures
231(3)
6.1.6 Plate Bending
234(9)
6.2 Dynamics
243(12)
6.2.1 Mass-Spring-Dashpot and Tensioned String
244(1)
6.2.2 Energy Method (Rayleigh's Method)
245(3)
6.2.3 Vibrations of Beams
248(3)
6.2.4 Vibrations of Plates
251(4)
6.3 MEMS Accelerometers
255(10)
6.3.1 Spring-Mass-Dashpot as Accelerometer
255(3)
6.3.2 A Bulk-Micromachined Silicon Accelerometer
258(2)
6.3.3 Piezoresistive Readout
260(1)
6.3.4 Piezoelectric Readout
261(1)
6.3.5 Capacitive Readout
262(3)
6.4 Vibratory Gyroscopes
265(6)
6.4.1 Working Principle
265(3)
6.4.2 Tuning Fork Gyroscope on Quartz
268(1)
6.4.3 Comb-Drive Tuning Fork MEMS Gyroscopes
269(2)
References
271(1)
Questions and Problems
272(9)
7 Thin-Film Properties, SAW/BAW Sensors, Pressure Sensors, and Microphones
281(28)
7.1 Thin-Film Residual Stress
281(7)
7.1.1 Thermal Stress σt
281(1)
7.1.2 Intrinsic Stress σi
282(1)
7.1.3 Techniques to Control Residual Stress in Thin Films
282(1)
7.1.4 Effects of Residual Stress
283(1)
7.1.5 Stress Measurement Techniques
284(4)
7.2 Piezoelectric Films
288(1)
7.2.1 Piezoelectric ZnO Film
288(1)
7.2.2 Piezoelectric AlN Film
289(1)
7.2.3 Ferroelectric Pb(Zr, Ti)O, (PZT) Film
289(1)
7.2.4 Brief Comparison of Piezoelectric Materials
289(1)
7.3 Material Properties Expressed as Tensor
289(16)
7.3.1 Pyroelectricity as First Rank Tensor
291(1)
7.3.2 Second Rank Tensor
292(1)
7.3.3 Piezoelectric Coefficients as Third Rank Tensor
293(2)
7.3.4 Surface Acoustic Wave Vapor Sensing
295(1)
7.3.5 Bulk Acoustic Wave Vapor Sensing
296(1)
7.3.6 Piezoresistivity as Fourth Rank Tensor
297(1)
7.3.7 Piezoresistive Silicon Pressure Sensor
298(3)
7.3.8 Capacitive Silicon Pressure Sensor
301(1)
7.3.9 Capacitive MEMS Microphone
301(3)
7.3.10 Piezoelectric MEMS Microphone
304(1)
References
305(1)
Questions and Problems
305(4)
8 Microfluidic Systems and Bio-MEMS
309(30)
8.1 Microchannels and Droplet Formation
309(5)
8.1.1 Electrowetting on Dielectrics
310(2)
8.1.2 Liquid Wetting over Structured Surface
312(2)
8.2 Microvalves
314(2)
8.3 Micropumps
316(4)
8.3.1 Valveless Micropumps
316(2)
8.3.2 Micropump Based on Electrostatic Actuation
318(1)
8.3.3 Micropump Based on Piezoelectric Unimorph
318(2)
8.3.4 Passive Capillary Pumping
320(1)
8.4 Micromixers
320(8)
8.4.1 Dielectrophoresis
321(1)
8.4.2 Acoustic Wave Micromixer
322(6)
8.4.3 Passive Mixing in Microchannels
328(1)
8.5 Lab-on-Chip
328(7)
8.5.1 Gene Sequencing
329(4)
8.5.2 MEMS-Based PCR and Single-Cell RT-PCR Systems
333(2)
References
335(2)
Questions
337(2)
9 Power MEMS
339(28)
9.1 Electromagnetic Vibration Energy Harvesting
339(11)
9.1.1 Mechanical Frequency Response of Vibration-Driven Energy Harvester
339(1)
9.1.2 Electromotive Force versus Frequency for Given Input Acceleration
340(1)
9.1.3 Mechanical Power Transfer Ratio
341(1)
9.1.4 Energy Conversion Efficiency
342(2)
9.1.5 Increasing Efficiency in Electromagnetic Energy Harvesters
344(4)
9.1.6 Maximum Power Delivery
348(2)
9.2 Piezoelectric Vibration Energy Harvesting
350(2)
9.2.1 Example: PZT Bimorph-Based Energy Harvester
351(1)
9.2.2 Piezoelectric versus Electromagnetic Energy Conversion
352(1)
9.3 Power Generation from Vibration Associated with Human's Walk
352(11)
9.3.1 Power-Generating Shoe, Knee Cap, and Backpack
353(1)
9.3.2 Challenges in Generating Power from Walking Motion without Loading the Person
353(1)
9.3.3 Magnetic Spring for Resonance at 2--4 Hz
354(3)
9.3.4 Magnet Levitation by Graphite with Resonance at 2--4 Hz
357(3)
9.3.5 Liquid Spring for Resonance at 2--4 Hz
360(1)
9.3.6 Non-resonant Suspension for Vibration Energy over Broad Frequency Range
361(2)
References
363(1)
Questions and Problems
364(3)
10 Electronic Noises, Interface Circuits, and Oscillators
367(22)
10.1 Input Referred Noise
367(3)
10.1.1 Noise Sources
367(1)
10.1.2 Equivalent Input-Referred Voltage and Current Noise Sources
368(2)
10.2 Voltage Amplifier versus Charge Amplifier for Piezoelectric Sensors
370(3)
10.2.1 Charge Amplifier
372(1)
10.3 Electromagnetic Interference
373(1)
10.3.1 Noise Reduction through Low-Pass Filter
374(1)
10.4 Poles and Zeros
374(4)
10.5 Design and Analysis of Oscillators Based on Bulk Acoustic-Wave Resonators
378(8)
10.5.1 Colpitts LC Oscillators
379(2)
10.5.2 Pierce BAR Oscillator
381(2)
10.5.3 HBAR-Based 3.6-GHz Oscillator
383(3)
References
386(1)
Questions and Problems
386(3)
Index 389