Muutke küpsiste eelistusi

E-raamat: Fundamentals Of Network Biology

(Sun Yat-sen University, China)
  • Formaat: 568 pages
  • Ilmumisaeg: 18-May-2018
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786345103
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 58,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 568 pages
  • Ilmumisaeg: 18-May-2018
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786345103
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

As the first comprehensive title on network biology, this book covers a wide range of subjects including scientific fundamentals (graphs, networks, etc) of network biology, construction and analysis of biological networks, methods for identifying crucial nodes in biological networks, link prediction, flow analysis, network dynamics, evolution, simulation and control, ecological networks, social networks, molecular and cellular networks, network pharmacology and network toxicology, big data analytics, and more.Across 12 parts and 26 chapters, with Matlab codes provided for most models and algorithms, this self-contained title provides an in-depth and complete insight on network biology. It is a valuable read for high-level undergraduates and postgraduates in the areas of biology, ecology, environmental sciences, medical science, computational science, applied mathematics, and social science.
Preface v
About the Author ix
Acknowledgments xi
Part 1 Mathematical Fundamentals 1(102)
1 Fundamentals of Graph Theory
3(18)
1.1 Definitions and Concepts
3(11)
1.2 Topological Definition of Graph
14(7)
2 Graph Algorithms
21(42)
2.1 Matrix Representation of Graphs
21(9)
2.2 Computer Storage of Graph
30(2)
2.3 Graph Algorithms
32(31)
3 Fundamentals of Network Theory
63(18)
3.1 Network Topology
64(2)
3.2 Random and Complex Networks
66(4)
3.3 Network Analysis
70(1)
3.4 Basic Algorithms
71(10)
4 Other Fundamentals
81(22)
4.1 Bayes' Rule
81(2)
4.2 Linear Regression
83(1)
4.3 Randomization, Bootstrap, and Monte Carlo Methods
84(6)
4.4 Stochastic Process
90(1)
4.5 Optimization Methods
90(4)
4.6 Functional Analysis
94(4)
4.7 Algebraic Topology
98(1)
4.8 Entropy of Systems
98(5)
Part 2 Crucial Nodes/Subnetworks/Modules, Network Types, and Structural Comparison 103(52)
5 Identification of Crucial Nodes and Subnetworks/Modules
105(24)
5.1 Features of Crucial Nodes
105(1)
5.2 Indices and Methods of Crucial Nodes
106(11)
5.3 Further Discussion
117(1)
5.4 Application Examples
118(3)
5.5 Identification of Subnetworks/Modules
121(8)
6 Detection of Network Types
129(10)
6.1 Methods
130(5)
6.2 Application Example
135(4)
7 Comparison of Network Structure
139(16)
7.1 Nonparametric Statistic Comparison of Network Structure
139(7)
7.2 Nonparametric Statistic Comparison of Community Structure
146(6)
7.3 Network Matrix-based Methods
152(2)
7.4 Other Methods
154(1)
Part 3 Network Dynamics, Evolution, Simulation, and Control 155(108)
8 Network Dynamics
157(18)
8.1 Differential Equations and Motion Stability
157(7)
8.2 Dynamics of Some Networks
164(11)
9 Network Robustness and Sensitivity Analysis
175(20)
9.1 Network Robustness
175(10)
9.2 Sensitivity Analysis
185(10)
10 Network Control
195(8)
10.1 Conventional Control
195(6)
10.2 New Perspectives of Network Control
201(2)
11 Network Evolution
203(26)
11.1 A Generalized Network Evolution Model for Community Assembly Dynamics
203(11)
11.2 A Model for Perturbed Food Web Dynamics
214(1)
11.3 A Network Evolution Algorithm Based on Node Attraction
215(6)
11.4 Phase Recognition of Network Evolution
221(8)
12 Cellular Automata
229(8)
12.1 Classification of Cellular Automata
230(2)
12.2 Algorithms of Cellular Automata
232(1)
12.3 Some Cases of Cellular Automata
232(5)
13 Self-Organization
237(18)
13.1 Basic Concept of Self-Organization
237(2)
13.2 Theories and Principles of Self-Organization
239(10)
13.3 Existing Algorithms of Self-Organization
249(1)
13.4 Self-Organization in Life Sciences
249(3)
13.5 Selforganizology
252(3)
14 Agent-based Modeling
255(8)
14.1 Complex Systems
255(3)
14.2 Principle and Methods of Agent-based Modeling
258(5)
Part 4 Flow Analysis 263(28)
15 Flow/Flux Analysis
265(26)
15.1 Flux Balance Analysis
265(18)
15.2 Flow Indices for Ecological Network Analysis
283(8)
Part 5 Link and Node Prediction 291(74)
16 Link Prediction: Sampling-based Methods
293(28)
16.1 Linear Correlation Analysis for Finding Interactions
293(8)
16.2 Partial Correlation of General Correlation Measures
301(12)
16.3 Combined Use of Linear Correlation and Rank Correlation: A Hierarchical Method for Finding Interactions
313(8)
17 Link Prediction: Structure- and Perturbation-based Methods
321(24)
17.1 Methods
322(17)
17.2 Performance Assessment of Link Prediction Methods
339(6)
18 Link Prediction: Node-Similarity-based Methods
345(16)
18.1 Link Prediction Based on Node Similarity
345(6)
18.2 Screening Node Attributes that Significantly Influence Node Centrality
351(10)
19 Node Prediction
361(4)
19.1 Methods
361(2)
19.2 Application Example
363(2)
Part 6 Network Construction 365(24)
20 Construction of Biological Networks
367(22)
20.1 Prediction Methods of Protein-Protein Interactions
367(3)
20.2 Gene Coexpression Network Analysis
370(2)
20.3 Classification-based Machine Learning
372(2)
20.4 Statistic Network
374(2)
20.5 Homogeneity Test of Samples and Sampling Completeness
376(5)
20.6 Network Construction Based on Power-Law or Exponential-Law Distribution of Node Degree
381(8)
Part 7 Pharmacological and Toxicological Networks 389(24)
21 Network Pharmacology and Toxicology
391(22)
21.1 Network Pharmacology
391(13)
21.2 Network Toxicology
404(9)
Part 8 Ecological Networks 413(26)
22 Food Webs
415(24)
22.1 Fundamentals of Food Webs
416(6)
22.2 Food Web Models
422(13)
22.3 Arthropod Food Webs
435(4)
Part 9 Microscopic Networks 439(20)
23 Molecular and Cellular Networks
441(18)
23.1 Metabolic Pathway of Nonalcoholic Fatty Liver Disease
442(2)
23.2 E. coli Transcriptional Regulatory Network
444(3)
23.3 Common Disease Regulatory Network for Metabolic Disorders
447(2)
23.4 Find Molecular Pathological Events in Different Cancer Tissues
449(3)
23.5 Crucial Metabolites/Reactions in Tumor Signaling Networks
452(1)
23.6 Brain Network
453(6)
Part 10 Social Networks 459(10)
24 Social Network Analysis
461(8)
24.1 Definition of Social Networks
461(6)
24.2 Network Criminology
467(2)
Part 11 Software 469(20)
25 Software for Network Analysis
471(18)
25.1 Software for Comprehensive Network Analysis
471(14)
25.2 Software for Network Layout and Others
485(4)
Part 12 Big Data Analytics 489(22)
26 Big Data Analytics for Network Biology
491(20)
26.1 Fundamentals of Big Data Analytics
492(4)
26.2 Text Mining with Python and R
496(3)
26.3 Big Data Analytics of Medicinal Attributes and Functions of Chinese Herbal Medicines
499(12)
References 511(32)
Index 543