Muutke küpsiste eelistusi

E-raamat: Fundamentals of Physics and Chemistry of the Atmosphere

  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Jun-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319294490
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Jun-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319294490
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is an introductory course to the physics and chemistry of the atmosphere and to climate dynamics. It covers the basics in thermodynamics, fluid dynamics, radiation, and chemistry and explains the most intriguing problems that currently exist in the study of the atmospheres of the Earth and planets. A particular effort is made to approach the different topics intuitively. Among the themes covered are the most recent evolution concerning the chemistry of polluted troposphere, the global warming problem, and chaos and nonlinear theory.

The book is almost completely rewritten in comparison to the previous edition, with a more logical organization of the chapters. The fundamentals of thermodynamics, radiation, fluid dynamics and chemistry are introduced in the first six chapters, including a new chapter on remote sensing. Also there is an additional chapter on geoengineering. A significant addition to the new edition, at the end of each chapter, are examples where the topics introduced in the chapter are further discussed with application to classical problems or new research items. Many of these examples are accompanied by computer programs. The most important updates deal with the theory of the general circulation, the methods to evaluate GCM, the detailed discussion of the urban troposphere and the chaos and nonlinear phenomena.

Arvustused

From reviews of the 1st edition -



"The book deserves a particularly positive appreciation in view not only of its inherent quality and scientific rigour, but also of the bright idea of the author to merge, into a unified context, the description of the laws of atmosphere as a result of otherwise inseparable elements... this book is deeply recommended as useful and all-embracing textbook of university courses of atmospheric physics and chemistry. Its original planning will certainly stimulate the attention of students and readers a ] ." (A. Longretto, Il Nuovo Cimento, January, 2003)



"A large part of the text is dedicated to atmospheric dynamics. Radiation, climate and chemistry are treated each in two chapters. As given in the preface, the book originated from an 1989 Italian popular science book and was eventually rewritten as a textbook along the lectures of the author in Environmental Science... This book ... offers a grand tour through a complex field." (C. Kessler, Meteorologische Zeitschrift, Vol. 12 (1), 2003)

1 Fundamentals: Thermodynamics of the Atmosphere
1(36)
1.1 Simple Laws
1(7)
1.1.1 The Scale Height
4(1)
1.1.2 The Potential Temperature
5(2)
1.1.3 Static Stability
7(1)
1.2 The Thermodynamics of Water Vapor
8(5)
1.2.1 The Equation of Clausius--Clapeyron
8(2)
1.2.2 About Eutectics
10(3)
1.3 Some Effects of Water Vapor
13(9)
1.3.1 The Tephigram or Thermodynamic Diagram
16(2)
1.3.2 The Skew T--Log P Diagram (Emagram)
18(2)
1.3.3 The Conditional Convective Instability
20(2)
1.4 The Distribution of Water Vapor in the Atmosphere
22(15)
E.1 Examples
24(1)
E.1.1 Was the Atmosphere Drier During the Ice Age?
24(1)
E.1.2 More on the Clausius--Clapeyron (C--C) Equation
25(1)
E.1.3 The Equivalent Potential Temperature
26(1)
E.1.4 The Saturated Adiabat
27(2)
E.1.5 Constructing an Emagram
29(2)
E.1.6 The Equal-Area Requirement
31(1)
E.1.7 The Virtual Temperature
32(1)
E.1.8 Using Diagrams in Forecasting
33(2)
References
35(2)
2 Fundamentals: Radiation in the Atmosphere
37(34)
2.1 The Definition of Radiometric Variables
37(2)
2.2 The Solar Radiation
39(4)
2.3 Scattering and Absorption of Solar Radiation
43(9)
2.3.1 Rayleigh Scattering
44(4)
2.3.2 The Absorption of Solar Radiation
48(4)
2.4 Infrared Radiation
52(19)
2.4.1 The Equation of Radiative Transfer
53(4)
2.4.2 The Radiative--Convective Atmosphere
57(2)
2.4.3 The Runaway Greenhouse
59(3)
E.2 Examples
62(1)
E.2.1 Rayleigh Scattering from Natural Light (Sunlight)
62(2)
E.2.2 A Simple Way to Evaluate Ozone Absorption
64(2)
E.2.3 The Radiative Time Constant
66(1)
E.2.4 A Simple Model for the Greenhouse Effect
67(2)
References
69(2)
3 The First Laws of Motion
71(34)
3.1 Scales and Orders of Magnitude
72(1)
3.2 The Basic Equations
73(10)
3.2.1 The Total Derivative
74(1)
3.2.2 The Continuity Equation
75(2)
3.2.3 Pressure Forces
77(1)
3.2.4 Friction Forces
78(2)
3.2.5 The Equations of Motion in an Inertial System
80(3)
3.3 Vorticity and Circulation
83(22)
3.3.1 Some Properties of Vorticity and Circulation
85(3)
3.3.2 The Vorticity Equation
88(6)
E.3 Examples
94(1)
E.3.1 The Coriolis Acceleration
94(2)
E.3.2 The Inertial Oscillation
96(2)
E.3.3 The Rossby Adjustment Problem (Nonrotating)
98(1)
E.3.4 The Rossby Adjustment Problem (Rotating Case)
99(2)
E.3.5 Energetics of the Adjustment
101(2)
References
103(2)
4 Dynamics: Few Simple Applications
105(36)
4.1 The Geostrophic Motion
105(7)
4.1.1 The Geostrophic Streamfunction
109(2)
4.1.2 The Quasi-geostrophy: The Isallobaric Wind
111(1)
4.2 The Thermal Wind
112(6)
4.2.1 Thermal Wind in the Atmosphere
116(2)
4.3 More About Geostrophic Wind
118(4)
4.3.1 Margules Formula
118(2)
4.3.2 Inertial Instability
120(2)
4.4 The Natural Coordinate System
122(4)
4.5 Some Application of Circulation and Vorticity
126(15)
4.5.1 The Sea Breeze
126(1)
4.5.2 Some Other Local Winds
127(3)
4.5.3 The Rossby Waves
130(5)
E.4 Examples
135(1)
E.4.1 The Sea Breeze Circulation
135(1)
E.4.2 The Circulation Around Lows and Highs
136(2)
E.4.3 Effects on the Propagation of Long Waves
138(2)
References
140(1)
5 Atmospheric Chemistry
141(20)
5.1 Characteristics of the Atmospheres
141(5)
5.2 Atmospheric Composition and Chemistry
146(2)
5.3 Chemical Kinetics
148(3)
5.4 Chemistry and Transport
151(10)
E.5 Examples
154(1)
E.5.1 Units for Chemical Abundance
154(1)
E.5.2 The Chapman Model for Atmospheric Ozone
155(2)
E.5.3 Calculation of Photolysis Rate
157(1)
E.5.4 Photodissociation and Vertical Transport
158(1)
E.5.5 A Time-Dependent Case
159(1)
References
160(1)
6 Introduction to Remote Sensing
161(20)
6.1 Observations of the Atmosphere
161(2)
6.2 Thermal Emission Measurements
163(1)
6.3 Ozone Measurements from Satellite
164(4)
6.4 Atmospheric Properties from Radio Occultation (RO)
168(3)
6.5 A Few Things About Radar
171(4)
6.6 Lidar Measurements
175(6)
E.6 Examples
177(1)
E.6.1 Refractive Index of Air
177(1)
E.6.2 The Abel Transform
178(2)
References
180(1)
7 The Atmospheric Motions
181(44)
7.1 The Thermodynamic Equation
181(3)
7.2 The Isentropic Coordinate System
184(4)
7.2.1 The Vorticity Equation in Isentropic Coordinates
186(2)
7.3 The Ertel Potential Vorticity
188(8)
7.3.1 The Application of the Potential Vorticity
190(2)
7.3.2 Ozone and Vorticity
192(2)
7.3.3 More on Rossby Waves
194(2)
7.4 The Non-stationary Solutions
196(6)
7.4.1 Numerical Solutions of a Flow Above an Obstacle: The Stationary Case
198(1)
7.4.2 Numerical Solutions of a Flow Above an Obstacle: The Non-stationary Case
199(3)
7.5 Quasi-Geostrophic Vorticity
202(4)
7.5.1 The Equation of Quasi-Geostrophic Potential Vorticity
204(2)
7.6 Potential Vorticity Inversion
206(5)
7.6.1 A Periodic Potential Vorticity Anomaly
208(1)
7.6.2 Rossby Waves and Vorticity Inversion
209(2)
7.7 Scaling of the Shallow Water Equations
211(14)
7.7.1 Scaling of the Equations of Motion
211(2)
7.7.2 Scaling of the Vorticity and Divergence Equations
213(3)
E.7 Examples
216(1)
E.7.1 Ertel Potential Vorticity in a Barotropic Fluid
216(1)
E.7.2 Conservation of Potential Vorticity
216(2)
E.7.3 Scaling and Vorticity Inversion
218(1)
E.7.4 Rossby Waves in Shallow Water
219(3)
E.7.5 Flow Over an Obstacle: The Numerical Solution
222(1)
References
223(2)
8 The Planetary Boundary Layer
225(36)
8.1 Turbulence and Diffusion
225(4)
8.2 Turbulent Friction
229(4)
8.2.1 The Mixing Length
231(2)
8.3 The Surface Layer
233(4)
8.4 The Ekman Layer
237(5)
8.5 The Secondary Circulation
242(4)
8.5.1 Spin-Down in a Teacup
244(2)
8.6 Turbulent Diffusion from Discrete Sources
246(15)
8.6.1 The Characteristics of Smoke Plumes
247(2)
8.6.2 The Gaussian Plume
249(3)
E.8 Examples
252(1)
E.8.1 Boundary Layer in the Ocean
252(1)
E.8.2 The Transfer of Sensible and Latent Heat
252(3)
E.8.3 The Fluxes in the Presence of Vegetation
255(3)
E.8.4 The Kolmogorov Spectrum
258(2)
References
260(1)
9 Aerosols and Clouds
261(36)
9.1 Sources of Atmospheric Aerosols
261(2)
9.2 The Size Distribution of Atmospheric Aerosols
263(3)
9.3 Nucleation and Growth
266(10)
9.3.1 Nucleation from Water Vapor Condensation
267(3)
9.3.2 The Growth by Condensation
270(1)
9.3.3 Droplet Growth by Collision and Coalescence
271(4)
9.3.4 The Statistical Growth
275(1)
9.4 Formation and Growth of Ice Crystals
276(5)
9.5 Stratospheric Aerosols
281(5)
9.5.1 The Sulfate Aerosol Layer
282(2)
9.5.2 Polar Stratospheric Clouds
284(2)
9.6 Clouds in Planetary Atmospheres
286(11)
E.9 Examples
290(1)
E.9.1 The Lognormal Size Distribution
290(2)
E.9.2 A Few Things More About the Kohler Curve
292(1)
E.9.3 Sedimentation of Particles
293(1)
References
294(3)
10 Waves in the Atmosphere
297(42)
10.1 Some Properties of the Waves
297(3)
10.2 Gravity Waves in Shallow Water
300(2)
10.3 Orographic Waves
302(2)
10.4 Internal Gravity Waves
304(3)
10.5 Three-Dimensional Rossby Waves
307(4)
10.6 The Physics of Gravity Waves
311(6)
10.6.1 The Equation of Quasi-geostrophic Potential Vorticity
311(1)
10.6.2 The Eliassen--Palm Flux
312(3)
10.6.3 Energetics of Gravity Waves
315(2)
10.7 Breaking, Saturation, and Turbulence in the Upper Atmosphere
317(22)
E.10 Examples
322(1)
E.10.1 Is the Phase Velocity a Vector?
322(3)
E.10.2 The Quasi-geostrophic Potential Vorticity in Log P Coordinates
325(1)
E.10.2 The Eliassen--Palm Flux Terms
326(1)
E.10.3 Energy and EP Flux
326(2)
E.10.4 The WKB Approximation
328(1)
E.10.5 The Numerical Solution to the Wave Equation
329(1)
E.10.6 A Few More Things About Mountain Waves
330(1)
E.10.7 Waves Forced by Sinusoidal Ridges
331(5)
References
336(3)
11 The Data on the Atmospheric Circulation
339(26)
11.1 The General Features
339(3)
11.2 The Energy Budget of the Atmosphere
342(10)
11.2.1 Forms of Energy
346(2)
11.2.2 Decomposition of Transport
348(2)
11.2.3 The Details of the Energy Budget
350(2)
11.3 The Mean Zonal Circulation
352(13)
E.11 Examples
357(1)
E.11.1 Waves and Momentum Flux
357(2)
E.11.2 Waves and Vorticity Flux
359(2)
E.11.3 More on Pseudomomentum
361(1)
References
362(3)
12 Theories on the General Circulation of the Atmosphere
365(52)
12.1 The Equatorial Circulation
365(13)
12.1.1 Gill's Symmetric Circulation
366(4)
12.1.2 The Nonlinear Symmetric Circulation
370(6)
12.1.3 The Vorticity Equation and Viscosity
376(2)
12.2 The Middle Latitude Circulation
378(17)
12.2.1 The Baroclinic Instability: Qualitative Treatment
380(3)
12.2.2 The Baroclinic Instability: The Eady Problem
383(4)
12.2.3 The Baroclinic Instability: The Charney Problem
387(2)
12.2.4 The Baroclinic Instability: Two-Level Model
389(6)
12.3 Energetics of the Baroclinic Waves
395(8)
12.3.1 Energy in the Two-Level Model
398(2)
12.3.2 The Parameterization of Transport
400(3)
12.4 The General Circulation: A Reductionist Approach
403(14)
12.4.1 The Inertial Instability
405(1)
12.4.2 A Comparison Among the Planets
406(2)
E.12 Examples
408(1)
E.12.1 The Thermodynamic Equation
408(1)
E.12.2 The Hadley Circulation as a Shallow Water Case
409(1)
E.12.3 The Hadley Circulation: Numerical Solution
410(1)
E.12.4 The Hadley Circulation on Slow-Rotating Planet?
411(2)
E.12.4 Transport by Eddies
413(2)
References
415(2)
13 Radiation for Different Uses
417(44)
13.1 Parameterization of Gaseous Absorption
417(7)
13.1.1 The Ozone Absorption
419(2)
13.1.2 The Water Vapor Absorption
421(3)
13.2 The Interaction of Solar Radiation with Particulates in the Atmosphere
424(9)
13.2.1 Optical Properties of the Particles
425(7)
13.2.2 Phase Functions and Mie Scattering
432(1)
13.3 Radiative Transfer in the Presence of Scattering
433(8)
13.3.1 Few Simple Applications of the δ-Eddington Approximation
438(3)
13.4 The Transfer of Infrared Radiation
441(2)
13.4.1 The Formal Solution
441(2)
13.5 Molecular Spectra
443(3)
13.5.1 Spectral Line Shape
444(2)
13.6 Models for the Line Absorption
446(5)
13.6.1 A Formulation of the Infrared Flux
448(2)
13.6.2 The Band Absorptivities According to Cess and Ramanathan
450(1)
13.7 δ-Eddington in the Infrared
451(10)
E.13 Examples
452(1)
E.13.1 Color for Nonabsorbing Spheres
452(1)
E.13.2 A Simple Model for Scattering
452(3)
E.13.3 Reflectivity and Transmission from Nonconservative Scattering
455(1)
E.13.4 A MATLAB Program for the Delta-Eddington
456(2)
E.13.5 Infrared Flux from Methane
458(1)
References
459(2)
14 Simple Climate Models
461(42)
14.1 Energy Budget
461(1)
14.2 Zero-Dimensional Models and Feedback
462(6)
14.3 One-Dimensional Energy Balance Climate Models
468(15)
14.3.1 North's Model
469(4)
14.3.2 The Stability of the One-Dimensional Model
473(3)
14.3.3 The Sellers Model
476(3)
14.3.4 The Time Dependence of EBM
479(4)
14.4 The Radiative--Convective Models
483(20)
14.4.1 The Radiative--Convective Models and the Greenhouse Effect
487(3)
14.4.2 Can We Put Together the Radiative--Convective and Energy Balance Climate Models?
490(1)
E.14 Examples
491(1)
E.14.1 Stability of North's Model
491(1)
E.14.2 Time-Dependent Solution of North's Model
492(3)
E.14.3 Temperature Profile from Maximum Entropy Principle
495(2)
E.14.4 Entropy Production and Energy Balance Models
497(5)
References
502(1)
15 The Application of Climate Models
503(66)
15.1 The Climate System
503(5)
15.2 The Solar Radiation and the Orbital Parameters
508(3)
15.3 Some Experimental Data on the Ice Ages
511(2)
15.4 The 100 Kyear Cycle and the Lithosphere--Atmosphere Coupling
513(6)
15.5 Stochastic Resonance
519(4)
15.6 The Global Warming: A Simple Exercise
523(8)
15.6.1 The Near Future Climate of the Earth as a Problem of Electrical Engineering
524(7)
15.7 The General Circulation Models
531(4)
15.7.1 The Model Equations
533(2)
15.8 The Performances of GCMs
535(34)
15.8.1 The Taylor Diagram
535(4)
15.8.2 The Feedback Factor
539(3)
15.8.3 The Bayesian Point of View
542(2)
15.8.4 The Bayesian Evaluation of Models: Part 1
544(2)
15.8.5 The Bayesian Evaluation of Models: Part 2
546(3)
E.15 Examples
549(1)
E.15.1 100 Kyear Glacial Cycle: Details
549(1)
E.15.2 A Multi-state Climate Model for the Timing of Glaciations
550(5)
E.15.3 The Wigley -- Schlesinger Model
555(2)
E.15.4 A Model to Explore Climate Sensitivity
557(5)
E.15.5 Properties of Two-Dimensional Gaussian Distribution
562(3)
E.15.6 A Simple Example
565(2)
References
567(2)
16 Chemistry of the Troposphere
569(46)
16.1 Introduction
569(1)
16.2 The Minor Gas Inventory
570(6)
16.2.1 Methane
572(1)
16.2.2 Nitrous Oxide
573(1)
16.2.3 Atmospheric Chlorine
574(2)
16.3 The Biogeochemical Cycle for Carbon
576(13)
16.3.1 Carbonate/CO2 System: A Bit of Marine Chemistry
578(6)
16.3.2 How Long Will the Biosphere Survive?
584(5)
16.4 Chemistry of the Troposphere
589(11)
16.4.1 Methane Oxidation
590(3)
16.4.2 The Chemistry of Urban Air
593(2)
16.4.3 Can We Control Air Quality?
595(2)
16.4.4 The Atmospheric Sulfur Cycle
597(3)
16.5 Modes of a Chemical System
600(15)
E.16 Examples
604(1)
E.16.1 The Simple Carbon Cycle
604(1)
E.16.2 The Carbon Cycle with the Ocean
605(1)
E.16.3 The Oxygen Cycle Is Connected with the Carbon Cycle
606(1)
E.16.4 The Simple Polluted Atmosphere
607(1)
E.16.5 The Isopleth Diagram for Ozone
608(1)
E.16.6 The Lifespan of the Biosphere
609(2)
E.16.7 An Example on Chemical Modes
611(1)
References
612(3)
17 Dynamics of the Middle Atmosphere
615(56)
17.1 Thermal Structure of the Stratosphere
616(2)
17.2 The Eulerian Mean Circulation
618(8)
17.2.1 The Transformed Eulerian Mean
620(2)
17.2.2 An Attempt to Understand the Origin of the Residual Circulation
622(1)
17.2.3 The Sudden Stratospheric Warming
623(3)
17.3 Tracers Transport in the Stratosphere
626(12)
17.3.1 The Two-Dimensional Diffusion Coefficients
627(3)
17.3.2 Self Consistent Transport in Two Dimensions
630(3)
17.3.3 Eddies and the Troposphere--Stratosphere Flux
633(5)
17.4 Transport in Isentropic Coordinates
638(33)
17.4.1 Stratospheric Dynamics and Ertel Potential Vorticity
640(2)
17.4.2 The Slope of the Tracers
642(4)
17.4.3 The Tracer Correlation: Age of Air and Transport
646(5)
17.4.4 The Conservative Coordinates
651(6)
E.17 Examples
657(1)
E.17.1 Troposphere--Stratosphere Exchange
657(2)
E.17.2 Equatorial Waves
659(4)
E.17.3 The Simplest Theory on Quasi-Biennial Oscillation
663(5)
References
668(3)
18 Stratospheric Chemistry
671(44)
18.1 The Ozone Distribution
672(2)
18.2 The Ozone Homogeneous Chemistry
674(12)
18.2.1 The Catalytic Cycles in the Gaseous Phase
676(1)
18.2.2 The Odd Hydrogen Catalytic Cycle
677(2)
18.2.3 The Odd Nitrogen Catalytic Cycle
679(2)
18.2.4 The Bromine and Chlorine Catalytic Cycles
681(3)
18.2.5 The Effects of the Catalytic Cycles
684(2)
18.3 Heterogeneous Chemistry
686(3)
18.4 The Perturbations to the Ozone Layer
689(16)
18.4.1 The Global Ozone Trend
691(3)
18.4.2 Natural and Anthropic Perturbations: Volcanic Eruptions
694(7)
18.4.3 Natural and Anthropic Perturbations: The Effect of Aviation
701(4)
18.5 Polar Ozone
705(10)
18.5.1 The Theory on the Polar Ozone
706(3)
E.18 Examples
709(1)
E.18.1 The Equivalent Effective Stratospheric Chlorine (EESC)
709(2)
E.18.2 Few More Things About Polar Stratospheric Clouds
711(1)
E.18.3 How to Calculate the Loss Rate of Ozone Over Antarctica
712(1)
References
713(2)
19 Chaos and Nonlinearities
715(50)
19.1 Simple Examples from the Theory of Dynamic Systems
716(4)
19.1.1 The Poincare Section
717(2)
19.1.2 Fractal Dimension
719(1)
19.2 The Climate
720(6)
19.3 Is El Nino Chaotic?
726(2)
19.4 Dimensions of Weather and Climate Attractors
728(5)
19.5 A Bridge to Nonlinearities: The Loop Oscillator
733(3)
19.6 The Thermohaline Circulation According to Stommel
736(5)
19.6.1 The Model
736(4)
19.6.2 Stability of the Solutions
740(1)
19.7 The Difference Equations
741(4)
19.7.1 Examples for Transitive and Intransitive System
743(2)
19.8 Nonlinearity and Delayed Differential Equations
745(20)
19.8.1 ENSO as a Delay Oscillator
747(3)
19.8.2 Aerosol--Cloud--Precipitation as the Predator--Prey Problem
750(4)
E.19 Examples
754(1)
E.19.1 The Lorenz System: The Mother of All Chaotic Systems
754(4)
E.19.2 The Logistic Map as an Example of Difference Equation
758(1)
E.19.3 The Lyapunov Exponent
759(3)
E.19.4 MATLAB Program for El Nino Delayed Oscillator
762(1)
E.19.5 MATLAB Program for the Predator--Prey Problem
762(1)
References
763(2)
20 Geoengineering
765(30)
20.1 A Short Inventory of Geoengineering Technologies
766(1)
20.2 Carbon Sequestration and Storage
767(4)
20.3 What Geoengineering Can Do
771(3)
20.4 Shortwave Options
774(5)
20.4.1 Increase Albedo
774(2)
20.4.2 Stratospheric Aerosol or How to Create a Volcanic Eruption
776(3)
20.5 Space Shields
779(2)
20.6 Can Solar Radiation Management Work?
781(3)
20.7 A Cure for the Ozone Hole with Geoengineering
784(11)
E.20 Examples
787(1)
E.20.1 Back to Radiative Transfer
787(1)
E.20.2 The Twomey Effect
788(2)
E.20.3 Energy Balance Model
790(2)
References
792(3)
Index 795