Muutke küpsiste eelistusi

E-raamat: Fundamentals of Resource Allocation in Wireless Networks: Theory and Algorithms

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The purpose of this book is to provide tools for a better understanding of the fundamental tradeo s and interdependencies in wireless networks, with the goal of designing resource allocation strategies that exploit these int- dependencies to achieve signi cant performance gains. Two facts prompted us to write it: First, future wireless applications will require a fundamental understanding of the design principles and control mechanisms in wireless networks. Second, the complexity of the network problems simply precludes the use of engineering common sense alone to identify good solutions, and so mathematics becomes the key avenue to cope with central technical problems in the design of wireless networks. In this book, two ?elds of mathematics play a central role: Perron-Frobenius theory for non-negative matrices and optimization theory. This book is a revised and expanded version of the research monograph Resource Allocation in Wireless Networks that was published as Lecture Notes in Computer Sciences (LNCS 4000) in 2006. Although the general structure has remained unchanged to a large extent, the book contains - merous additional results and more detailed discussion. For instance, there is a more extensive treatment of general nonnegative matrices and interf- ence functions that are described by an axiomatic model. Additional material on max-min fairness, proportional fairness, utility-based power control with QoS (quality of service) support and stochastic power control has been added.

Arvustused

From the reviews of the second edition:

In a world of ubiquitous wireless services there is constant demand for reliable and fast connections. The book Fundamentals of Resource Allocation in Wireless Networks: Theory and Algorithms written by Stanczak, Wiczanowski, and Boche, all from Technical University of Berlin, is a great example of a book that presents such a formal analysis toolbox. The book is well organized, and the typography is of high standard. For all engineers and scientists interested in advanced concepts in resource allocation this book is a must-read. (Przemyslaw Pawelczak, IEEE Communications Magazine, February, 2010)

List of Symbols
xxi
Part I Mathematical Framework
On the Perron Root of Irreducible Matrices
3(58)
Some Basic Definitions
3(1)
Some Bounds on the Perron Root and their Applications
4(21)
Concavity of the Perron Root on Some Subsets of Irreducible Matrices
11(3)
Kullback-Leibler Divergence Characterization
14(1)
A Rate Function Representation for Large Deviations of Finite Dimensional Markov Chains
15(5)
Some Extended Perron Root Characterizations
20(2)
Collatz-Wielandt-Type Characterization of the Perron Root
22(3)
Convexity of the Perron Root
25(9)
Some Definitions
26(2)
Sufficient Conditions
28(2)
Convexity of the Feasibility Set
30(2)
Necessary Conditions
32(2)
Special Classes of Matrices
34(3)
Symmetric Matrices
35(1)
Symmetric Positive Semidefinite Matrices
36(1)
The Perron Root under the Linear Mapping
37(8)
Some Bounds
39(3)
Disproof of the Conjecture
42(3)
The Perron Root under Exponential Mapping
45(6)
A Necessary and Sufficient Condition on Strict Convexity of the Feasibility Set
45(3)
Graph-theoretic Interpretation
48(3)
Generalizations to Arbitrary Nonnegative Matrices
51(8)
Log-Convexity of the Spectral Radius
52(1)
Characterization of the Spectral Radius
52(4)
Existence of Positive Eigenvectors
56(1)
Collatz-Wielandt-Type Characterization of the Spectral Radius
57(2)
Bibliographical Notes
59(2)
On the Positive Solution to a Linear System with Nonnegative Coefficients
61(20)
Basic Concepts and Definitions
61(2)
Feasibility Sets
63(3)
Convexity Results
66(10)
Log-Convexity of the Positive Solution
67(2)
Convexity of the Feasibility Set
69(1)
Strict Log-Convexity
70(5)
Strict Convexity of the Feasibility Sets
75(1)
The Linear Case
76(5)
Part II Principles of Resource Allocation in Wireless Networks
Introduction
81(4)
Network Model
85(34)
Basic Definitions
85(2)
Medium Access Control
87(3)
Wireless Communication Channel
90(29)
Signal-to-Interference Ratio
94(4)
Different Receiver Structures
98(6)
Power Constraints
104(3)
Data Rate Model
107(4)
Examples
111(8)
Resource Allocation Problem in Communications Networks
119(142)
End-to-End Rate Control in Wired Networks
119(6)
Fairness Criteria
120(4)
Algorithms
124(1)
Problem Formulation for Wireless Networks
125(25)
Joint Power Control and Link Scheduling
126(3)
Feasible Rate Region
129(3)
End-to-End Window-Based Rate Control
132(2)
MAC Layer Fair Rate Control
134(2)
Utility-Based Power Control
136(5)
Efficiency-Fairness Trade-Off
141(5)
Kuhn-Tucker Conditions
146(4)
Interpretation in the QoS Domain
150(10)
Remarks on Joint Power Control and Link Scheduling
160(8)
Optimal Joint Power Control and Link Scheduling
160(3)
High SIR Regime
163(1)
Low SIR Regime
163(4)
Wireless Links with Self-Interference
167(1)
QoS-based Power Control
168(23)
Some Definitions
169(5)
Axiomatic Interference Functions
174(6)
QoS-Based Power Control Algorithms
180(11)
Max-Min SIR Balancing Power Control
191(19)
Some Preliminary Observations
192(3)
Characterization under Sum Power Constraints
195(4)
General Power Constraints
199(5)
Some Consequences and Applications
204(6)
Utility-based Power Control with QoS Support
210(12)
Hard QoS Support
212(1)
Soft QoS Support
213(9)
Utility-Based Joint Power and Receiver Control
222(6)
Problem Statement
222(2)
Perfect Synchronization
224(2)
Decentralized Alternating Computation
226(1)
Max-Min SIR Balancing
227(1)
Additional Results for a Noiseless Case
228(18)
The Efficiency-Fairness Trade-off
229(12)
Existence and Uniqueness of Log-SIR Fair Power Allocation
241(5)
Proofs
246(15)
Part III Algorithms
Power Control Algorithms
261(140)
Introduction
261(1)
Some Basic Definitions
262(2)
Convex Statement of the Problem
264(2)
Strong Convexity Conditions
266(4)
Gradient Projection Algorithm
270(6)
Global Convergence
270(3)
Rate of Convergence
273(2)
Diagonal Scaling
275(1)
Projection on a Closed Convex Set
275(1)
Distributed Implementation
276(12)
Local and Global Parts of the Gradient Vector
276(2)
Adjoint Network
278(4)
Distributed Handshake Protocol
282(1)
Some Comparative Remarks
283(2)
Noisy Measurements
285(3)
Incorporation of QoS Requirements
288(14)
Hard QoS Support
289(11)
Soft QoS Support
300(2)
Primal-Dual Algorithms
302(45)
Improving Efficiency by Primal-Dual Methods
304(7)
Generalized Lagrangian
311(8)
Primal-Dual Algorithms
319(3)
Decentralized Implementation
322(4)
Min-max Optimization Framework
326(16)
Simulation Results
342(5)
Part IV Appendices
Some Concepts and Results from Matrix Analysis
347(30)
Vectors and Vector Norms
347(2)
Matrices and Matrix Norms
349(2)
Square Matrices and Eigenvalues
351(2)
Matrix Spectrum, Spectral Radius and Neumann Series
353(2)
Orthogonal, Symmetric and Positive Semidefinite Matrices
355(2)
Perron-Frobenius Theory
357(1)
Perron-Frobenius Theorem for Irreducible Matrices
358(4)
Perron-Frobenius Theorem for Primitive Matrices
362(1)
Some Extensions to Reducible Matrices
363(8)
The Existence of a Positive Solution p to (αI - X)p = b
371(6)
Some Concepts and Results from Convex Analysis
377(24)
Sets and Functions
377(6)
Convex Sets and Functions
383(1)
Strong Convexity
384(2)
Majorization and Schur-Convexity
386(1)
Log-Convex Functions
386(2)
Inverse Functions of Monotonic Log-Convex Functions
388(1)
Basics of Optimization Theory
389(1)
Characterization of Numerical Convergence
390(2)
Convergence of Gradient Projection Algorithms
392(3)
Basics of Lagrangian Optimization Theory
395(3)
Saddle Points, Saddle Functions, Min-Max Functions
398(3)
References 401(10)
Index 411