|
|
1 | (16) |
|
|
15 | (2) |
|
2 Matrices, Vectors, Frames, Transforms |
|
|
17 | (50) |
|
|
17 | (4) |
|
|
21 | (1) |
|
2.3 Jacobian, Gradient, and Hessian |
|
|
22 | (2) |
|
2.4 Orthonormal Bases, Change of Basis |
|
|
24 | (4) |
|
2.5 Vectors in Three Dimensions |
|
|
28 | (3) |
|
2.6 Some Useful Reference Frames |
|
|
31 | (6) |
|
2.6.1 Spacecraft Body Frame |
|
|
31 | (1) |
|
2.6.2 Inertial Reference Frames |
|
|
31 | (1) |
|
2.6.3 Earth-Centered/Earth-Fixed Frame |
|
|
32 | (4) |
|
2.6.4 Local-Vertical/Local-Horizontal Frame |
|
|
36 | (1) |
|
|
37 | (3) |
|
2.8 Rotations and Euler's Theorem |
|
|
40 | (1) |
|
2.9 Attitude Representations |
|
|
41 | (18) |
|
2.9.1 Euler Axis/Angle Representation |
|
|
41 | (3) |
|
2.9.2 Rotation Vector Representation |
|
|
44 | (1) |
|
2.9.3 Quaternion Representation |
|
|
45 | (3) |
|
2.9.4 Rodrigues Parameter Representation |
|
|
48 | (2) |
|
2.9.5 Modified Rodrigues Parameters |
|
|
50 | (2) |
|
|
52 | (7) |
|
2.10 Attitude Error Representations |
|
|
59 | (8) |
|
|
64 | (3) |
|
3 Attitude Kinematics and Dynamics |
|
|
67 | (56) |
|
|
68 | (3) |
|
|
68 | (1) |
|
3.1.2 Vector Addition of Angular Velocity |
|
|
69 | (1) |
|
|
70 | (1) |
|
3.2 Kinematics of Attitude Parameterizations |
|
|
71 | (6) |
|
3.2.1 Quaternion Kinematics |
|
|
71 | (1) |
|
3.2.2 Rodrigues Parameter Kinematics |
|
|
72 | (1) |
|
3.2.3 Modified Rodrigues Parameter Kinematics |
|
|
72 | (1) |
|
3.2.4 Rotation Vector Kinematics |
|
|
72 | (1) |
|
3.2.5 Euler Angle Kinematics |
|
|
73 | (3) |
|
3.2.6 Attitude Error Kinematics |
|
|
76 | (1) |
|
|
77 | (46) |
|
3.3.1 Angular Momentum and Kinetic Energy |
|
|
77 | (3) |
|
3.3.2 Rigid Body Dynamics |
|
|
80 | (4) |
|
|
84 | (6) |
|
3.3.4 Torque-Free Motion of a Rigid Body |
|
|
90 | (9) |
|
|
99 | (4) |
|
|
103 | (8) |
|
3.3.7 Angular Momentum for Health Monitoring |
|
|
111 | (1) |
|
3.3.8 Dynamics of Earth-Pointing Spacecraft |
|
|
112 | (9) |
|
|
121 | (2) |
|
|
123 | (60) |
|
|
123 | (2) |
|
|
125 | (8) |
|
|
125 | (1) |
|
|
126 | (1) |
|
4.2.3 Field of View, Resolution, Update Rate |
|
|
127 | (2) |
|
|
129 | (1) |
|
4.2.5 Proper Motion, Parallax, and Aberration |
|
|
130 | (3) |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
135 | (1) |
|
4.6 Global Positioning System |
|
|
136 | (4) |
|
|
138 | (2) |
|
|
140 | (7) |
|
4.7.1 Gyro Measurement Model |
|
|
143 | (4) |
|
|
147 | (19) |
|
4.8.1 Reaction Wheel Characteristics |
|
|
148 | (1) |
|
4.8.2 Reaction Wheel Disturbances |
|
|
148 | (4) |
|
4.8.3 Redundant Wheel Configurations |
|
|
152 | (14) |
|
|
166 | (2) |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
170 | (13) |
|
|
178 | (5) |
|
5 Static Attitude Determination Methods |
|
|
183 | (52) |
|
|
184 | (2) |
|
|
186 | (1) |
|
5.3 Quaternion Solutions of Wahba's Problem |
|
|
187 | (9) |
|
5.3.1 Davenport's Q Method |
|
|
187 | (2) |
|
5.3.2 Quaternion Estimator (QUEST) |
|
|
189 | (2) |
|
5.3.3 Another View of QUEST |
|
|
191 | (1) |
|
5.3.4 Method of Sequential Rotations |
|
|
192 | (2) |
|
5.3.5 Estimator of the Optimal Quaternion (ESOQ) |
|
|
194 | (1) |
|
5.3.6 Second Estimator of the Optimal Quaternion (ESOQ2) |
|
|
195 | (1) |
|
5.4 Matrix Solutions of Wahba's Problem |
|
|
196 | (5) |
|
5.4.1 Singular Value Decomposition (SVD) Method |
|
|
196 | (2) |
|
5.4.2 Fast Optimal Attitude Matrix (FOAM) |
|
|
198 | (1) |
|
5.4.3 Wahba's Problem with Two Observations |
|
|
199 | (2) |
|
5.5 Error Analysis of Wahba's Problem |
|
|
201 | (7) |
|
5.5.1 Attitude Error Vector |
|
|
201 | (3) |
|
5.5.2 Covariance Analysis of Wahba's Problem |
|
|
204 | (3) |
|
5.5.3 Covariance with Two Observations |
|
|
207 | (1) |
|
5.6 MLE for Attitude Determination |
|
|
208 | (8) |
|
5.6.1 Fisher Information Matrix for Attitude Determination |
|
|
212 | (4) |
|
5.7 Induced Attitude Errors from Orbit Errors |
|
|
216 | (2) |
|
5.8 TRMM Attitude Determination |
|
|
218 | (5) |
|
5.9 GPS Attitude Determination |
|
|
223 | (12) |
|
|
231 | (4) |
|
6 Filtering for Attitude Estimation and Calibration |
|
|
235 | (52) |
|
6.1 Attitude Representations for Kalman Filtering |
|
|
236 | (4) |
|
6.1.1 Three-Component Representations |
|
|
236 | (1) |
|
6.1.2 Additive Quaternion Representation |
|
|
237 | (2) |
|
6.1.3 Multiplicative Quaternion Representation |
|
|
239 | (1) |
|
|
240 | (23) |
|
6.2.1 Kalman Filter Formulation |
|
|
240 | (6) |
|
6.2.2 Gyro Calibration Kalman Smoother |
|
|
246 | (8) |
|
6.2.3 Filtering and the QUEST Measurement Model |
|
|
254 | (3) |
|
6.2.4 Mission Mode Kalman Filter |
|
|
257 | (3) |
|
|
260 | (3) |
|
6.3 Farrenkopf's Steady-State Analysis |
|
|
263 | (6) |
|
6.4 Magnetometer Calibration |
|
|
269 | (18) |
|
|
270 | (2) |
|
|
272 | (2) |
|
6.4.3 The TWOSTEP Algorithm |
|
|
274 | (2) |
|
6.4.4 Extended Kalman Filter Approach |
|
|
276 | (1) |
|
6.4.5 TRACE Spacecraft Results |
|
|
277 | (6) |
|
|
283 | (4) |
|
|
287 | (58) |
|
|
287 | (2) |
|
7.2 Attitude Control: Regulation Case |
|
|
289 | (5) |
|
7.3 Attitude Control: Tracking Case |
|
|
294 | (9) |
|
7.3.1 Alternative Formulation |
|
|
301 | (2) |
|
7.4 Attitude Thruster Control |
|
|
303 | (4) |
|
7.5 Magnetic Torque Attitude Control |
|
|
307 | (5) |
|
|
308 | (3) |
|
|
311 | (1) |
|
|
312 | (6) |
|
7.7 SAMPEX Control Design |
|
|
318 | (27) |
|
7.7.1 Attitude Determination |
|
|
321 | (3) |
|
7.7.2 Magnetic Torque Control Law |
|
|
324 | (1) |
|
|
324 | (8) |
|
7.7.4 Reaction Wheel Control Law |
|
|
332 | (1) |
|
|
333 | (8) |
|
|
341 | (4) |
|
|
345 | (16) |
|
A.1 Cross Product Identities |
|
|
345 | (1) |
|
A.2 Basic Quaternion Identities |
|
|
346 | (3) |
|
A.3 The Matrices Ξ(q), Ψ(q), Ω(ω), and Γ(ω) |
|
|
349 | (1) |
|
A.4 Identities Involving the Attitude Matrix |
|
|
350 | (4) |
|
|
354 | (1) |
|
A.6 Quaternion Kinematics |
|
|
355 | (6) |
|
|
359 | (2) |
|
|
361 | (4) |
|
|
365 | (38) |
|
|
365 | (5) |
|
|
370 | (12) |
|
C.2.1 Classical Orbital Elements |
|
|
374 | (2) |
|
|
376 | (3) |
|
|
379 | (3) |
|
|
382 | (10) |
|
C.3.1 Non-Spherical Gravity |
|
|
382 | (6) |
|
|
388 | (1) |
|
|
389 | (1) |
|
C.3.4 Solar Radiation Pressure |
|
|
390 | (2) |
|
|
392 | (6) |
|
C.4.1 Variation of Parameters |
|
|
392 | (1) |
|
|
393 | (2) |
|
C.4.3 A Useful Approximation, Secular J2 Effects Only |
|
|
395 | (2) |
|
C.4.4 Sun-Synchronous Orbits |
|
|
397 | (1) |
|
|
398 | (5) |
|
|
402 | (1) |
|
|
403 | (22) |
|
D.1 Magnetic Field Models |
|
|
403 | (3) |
|
|
404 | (2) |
|
|
406 | (14) |
|
D.2.1 Exponentially Decaying Model Atmosphere |
|
|
406 | (1) |
|
D.2.2 Harris-Priester Model Atmosphere |
|
|
407 | (1) |
|
D.2.3 Jacchia and GOST Model Atmospheres |
|
|
408 | (1) |
|
D.2.4 Jacchia-Bowman 2008 (JB2008) Model Atmosphere |
|
|
409 | (11) |
|
D.3 Sun Position, Radiation Pressure, and Eclipse Conditions |
|
|
420 | (2) |
|
D.4 Orbital Ephemerides of the Sun, Moon, and Planets |
|
|
422 | (3) |
|
|
423 | (2) |
|
E Review of Control and Estimation Theory |
|
|
425 | (50) |
|
|
425 | (12) |
|
E.1.1 Inverted Pendulum Modeling |
|
|
425 | (3) |
|
E.1.2 State and Observation Models |
|
|
428 | (6) |
|
E.1.3 Discrete-Time Systems |
|
|
434 | (3) |
|
|
437 | (11) |
|
E.2.1 Basic Linear Control Design |
|
|
437 | (5) |
|
E.2.2 Stability of Nonlinear Dynamic Systems |
|
|
442 | (2) |
|
E.2.3 Sliding-Mode Control |
|
|
444 | (4) |
|
|
448 | (27) |
|
E.3.1 Static-Based and Filter-Based Estimation |
|
|
449 | (2) |
|
E.3.2 Batch Least Squares Estimation |
|
|
451 | (2) |
|
E.3.3 Sequential Least Squares Estimation |
|
|
453 | (1) |
|
E.3.4 Maximum Likelihood Estimation |
|
|
454 | (2) |
|
E.3.5 Nonlinear Least Squares |
|
|
456 | (6) |
|
E.3.6 Advantages and Disadvantages |
|
|
462 | (1) |
|
E.3.7 State Estimation Techniques |
|
|
462 | (8) |
|
E.3.8 Linear Covariance Analysis |
|
|
470 | (1) |
|
|
470 | (3) |
|
|
473 | (2) |
|
|
475 | (2) |
Index |
|
477 | |