Muutke küpsiste eelistusi

E-raamat: Fundamentals of Ultrasonic Phased Arrays

  • Formaat - PDF+DRM
  • Hind: 216,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements. The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and seismology communities. A unique feature of this book is that it presents a unified theory of imaging with phased arrays that shows how common imaging methods such as the synthetic aperture focusing technique (SAFT), the total focusing method (TFM), and the physical optics far field inverse scattering (POFFIS) imaging method are all simplified versions of more fundamental and quantitative imaging approaches, called imaging measurement models.

To enhance learning, this book first describes the fundamentals of phased array systems using 2-D models, so that the complex 3-D cases normally found in practice can be more easily understood. In addition to giving a detailed discussion of phased array systems, Fundamentals of Ultrasonic Phased Arrays also provides MATLAB® functions and scripts, allowing the reader to conduct simulations of ultrasonic phased array transducers and phased array systems with the latest modeling technology.

  1 Introduction
  1 (16)
  1.1 An Overview
  1 (4)
  1.2 Linear and 2-D Arrays
  5 (2)
  1.3 Modeling Ultrasonic Phased Array Systems
  7 (6)
  1.4 Book Outline
  13 (4)
  References
  15 (2)
  2 Acoustic Field of a 1-D Array Element
  17 (28)
  2.1 Single Element Transducer Models (2-D)
  17 (6)
  2.2 Far Field Waves
  23 (4)
  2.3 Numerical Piston Element Models
  27 (6)
  2.4 Line Source Models
  33 (3)
  2.5 Radiation Through a Planar Interface
  36 (9)
  References
  44 (1)
  3 Large, Single Element Transducer Models
  45 (28)
  3.1 The Paraxial Approximation and a Fresnel Integral Model
  45 (2)
  3.2 Beam Steering and Focusing of a Large Element
  47 (13)
  3.2.1 Beam Steering
  48 (2)
  3.2.2 Steering in the Far Field
  50 (1)
  3.2.3 Beam Focusing
  51 (6)
  3.2.4 Beam Steering and Focusing
  57 (3)
  3.3 Amplitude Weighting
  60 (5)
  3.4 Multi-Gaussian Beam Model
  65 (6)
  3.5 Summary
  71 (2)
  References
  72 (1)
  4 Phased Array Beam Modeling (1-D Elements)
  73 (26)
  4.1 Phased Array Beam Models
  73 (7)
  4.1.1 Far Field Behavior of an Array
  76 (4)
  4.2 Array Beam Steering
  80 (5)
  4.3 Array Beam Focusing
  85 (2)
  4.4 Array Amplitude Weighting
  87 (2)
  4.5 Array Beam Modeling Examples
  89 (2)
  4.6 Use of Gaussians for Modeling Phased Array Beam Fields
  91 (3)
  4.7 Beam Steering and Focusing through a Planar Interface
  94 (5)
  References
  98 (1)
  5 Time Delay Laws (2-D)
  99 (14)
  5.1 Delay Laws for a Single Medium
  99 (3)
  5.2 Steering and Focusing Through a Planar Interface
  102 (11)
  References
  111 (2)
  6 Acoustic Field of a 2-D Array Element
  113 (34)
  6.1 Single Element Transducer Models (3-D)
  113 (4)
  6.2 Far Field Waves
  117 (2)
  6.3 Numerical Point Source Piston Model
  119 (3)
  6.4 Contact Transducer Element Modeling
  122 (2)
  6.5 Radiation Through a Planar Interface
  124 (14)
  6.6 Gaussian Beam Equivalent Point Source Modeling
  138 (9)
  References
  146 (1)
  7 Phased Array Beam Modeling (2-D Elements)
  147 (22)
  7.1 Phased Array Beam Models---Single Medium
  147 (9)
  7.1.1 Far Field Behavior of an Array
  151 (1)
  7.1.2 Beam Steering in 3-D
  152 (4)
  7.2 Radiation Through a Planar Interface
  156 (4)
  7.3 Array Beam Modeling Examples
  160 (9)
  Reference
  168 (1)
  8 Tim e Delay Laws (3-D)
  169 (10)
  8.1 Beam Steering in 3-D
  169 (1)
  8.2 Beam Steering and Focusing in 3-D
  170 (2)
  8.3 Beam Steering Through a Planar Interface
  172 (1)
  8.4 Beam Steering and Focusing Through a Planar Interface
  173 (6)
  Reference
  177 (2)
  9 Linear System Modeling of Phased Arrays
  179 (16)
  9.1 Linear System Modeling and Sound Generation
  180 (4)
  9.2 Linear System Modeling and Sound Reception
  184 (5)
  9.3 The Reception Process and Grating Lobes
  189 (2)
  9.4 Linear System Model of the Complete Ultrasonic Measurement Process
  191 (4)
  References
  193 (2)
  10 Phased Array System Functions
  195 (16)
  10.1 Acoustic/Elastic Transfer Function Models
  195 (11)
  10.2 Array Element System Functions
  206 (5)
  Reference
  209 (2)
  11 Measurement Models for Ultrasonic Arrays
  211 (30)
  11.1 Reciprocity Relations
  212 (4)
  11.2 An Ultrasonic Measurement Model for Immersion Setups
  216 (1)
  11.3 An Ultrasonic Measurement Model for Contact Setups
  217 (1)
  11.4 A Reduced Measurement Model for Small Flaws
  218 (6)
  11.5 Measurement Models for Quantitative Imaging
  224 (10)
  11.6 Measurement Models for 2-D Problems
  234 (7)
  References
  240 (1)
  12 Imaging with Phased Arrays---An Introduction
  241 (38)
  12.1 SAFT Imaging
  241 (3)
  12.2 TFM Imaging
  244 (2)
  12.3 The Image Formation Process
  246 (3)
  12.4 Far Field Imaging Measurement Models (2-D)
  249 (14)
  12.5 Imaging Simulations
  263 (16)
  References
  277 (2)
  13 Imaging Measurement Models
  279 (34)
  13.1 Pulse-Echo Imaging
  279 (8)
  13.2 Full Matrix Imaging
  287 (6)
  13.3 2-D Imaging with a Linear Array
  293 (9)
  13.4 Discussion
  302 (2)
  13.5 Summary of Imaging Measurement Models
  304 (9)
  References
  310 (3)
  14 Element Boundary Conditions and Other Modeling Issues
  313 (14)
  14.1 Finite Impedance Baffle Model
  313 (5)
  14.2 Line Source Model of an Element in a Finite Impedance Baffle
  318 (7)
  14.3 Other Modeling Issues
  325 (2)
  References
  326 (1)
  Appendices
  327 (48)
  A The Beylkin Determinant
  327 (7)
  A.1 The Beylkin Determinant for 3-D Imaging (Common Source Case)
  327 (3)
  A.2 The Beylkin Determinant for 3-D Imaging (Pulse-Echo Case)
  330 (1)
  A.3 The Beylkin Determinant for 2-D Imaging
  331 (3)
  A.4 References
  334 (1)
  B Angle-Area Ratios
  334 (6)
  B.1 Ratios for Inspection in a Single Medium
  334 (1)
  B.2 Ratios for Inspection Through a Planar Interface
  335 (4)
  B.3 References
  339 (1)
  C MATLAB® Functions and Scripts
  340 (35)
  C.1 Beam Models for Single Elements
  340 (1)
  C.2 Delay Laws and Apodization Laws
  341 (1)
  C.3 Beam Models for Arrays
  341 (1)
  C.4 Miscellaneous Functions
  342 (1)
  C.5 Code Listings
  343 (32)
Index   375  
Les Schmerr received a B.S. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 1965 and a Ph.D. in Mechanics from the Illinois Institute of Technology in 1970. Since 1969 he has been at Iowa State University where he is currently Professor of Aerospace Engineering and Associate Director of the Center for Nondestructive Evaluation. He is also the Permanent Secretary of the World Federation of NDE Centers. His research interests include ultrasonics, elastic wave propagation and scattering, and artificial intelligence. He has developed and taught Ultrasonics and Nondestructive Evaluation courses at both the undergraduate and graduate level.  He is the author of the book Fundamental of Ultrasonic Nondestructive Evaluation - A Modeling Approach which was published by Plenum Press in 1998 and the book Ultrasonic Nondestructive Evaluations Systems - Models and Measurements which was published by Springer in 2007.  He is a member of IEEE, ASME, ASNT and AIAA.