Muutke küpsiste eelistusi

E-raamat: Fuzzy Data Matching with SQL: Enhancing Data Quality and Query Performance

  • Formaat: 284 pages
  • Ilmumisaeg: 03-Oct-2023
  • Kirjastus: O'Reilly Media
  • Keel: eng
  • ISBN-13: 9781098152239
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 47,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 284 pages
  • Ilmumisaeg: 03-Oct-2023
  • Kirjastus: O'Reilly Media
  • Keel: eng
  • ISBN-13: 9781098152239
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

If you were handed two different but related sets of data, what tools would you use to find the matches? What if all you had was SQL SELECT access to a database? In this practical book, author Jim Lehmer provides best practices, techniques, and tricks to help you import, clean, match, score, and think about heterogeneous data using SQL.

DBAs, programmers, business analysts, and data scientists will learn how to identify and remove duplicates, parse strings, extract data from XML and JSON, generate SQL using SQL, regularize data and prepare datasets, and apply data quality and ETL approaches for finding the similarities and differences between various expressions of the same data.

Full of real-world techniques, the examples in the book contain working code. You'll learn how to:

  • Identity and remove duplicates in two different datasets using SQL
  • Regularize data and achieve data quality using SQL
  • Extract data from XML and JSON
  • Generate SQL using SQL to increase your productivity
  • Prepare datasets for import, merging, and better analysis using SQL
  • Report results using SQL
  • Apply data quality and ETL approaches to finding similarities and differences between various expressions of the same data

James Lehmer has been "in computers" for over three decades in various software development roles - programmer, systems programmer, software engineer, team lead, and software architect. He has worked on a variety of operating systems with a number of programming languages. James currently works in a Windows shop coding primarily in C#, but with his background in cross-platform development, he often gets tapped to deal with any *IX boxes that enter his environment.