Muutke küpsiste eelistusi

E-raamat: Fuzzy Filter-Based State of Energy Estimation for Lithium-Ion Batteries

  • Formaat: 140 pages
  • Ilmumisaeg: 21-Mar-2024
  • Kirjastus: Cambridge Scholars Publishing
  • ISBN-13: 9781527570672
  • Formaat - PDF+DRM
  • Hind: 113,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Fuzzy Filter-Based State of Energy Estimation for Lithium-Ion Batteries
  • Formaat: 140 pages
  • Ilmumisaeg: 21-Mar-2024
  • Kirjastus: Cambridge Scholars Publishing
  • ISBN-13: 9781527570672

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Awareness of the safety issues of lithium-ion batteries is crucial in the development of new energy technologies, and real-time and high-precision State of Energy (SOE) estimation is not only a prerequisite for battery safety, but also serves as the basis for predicting the remaining driving range of electric vehicles and aircrafts. In order to achieve real-time and accurate estimation of the energy state of lithium-ion batteries, this book improves the calculation method of the open-circuit voltage in the traditional second-order RC equivalent circuit model. It also combines a fuzzy controller and a dual-weighted multi-innovation algorithm to optimize the traditional Centralized Kalman Filter (CKF) algorithm in terms of the aspects of convergence speed, estimation accuracy, and algorithm robustness. This enables the precise estimation of SOE and the maximum available energy. The content of this book provides theoretical support for the development of new energy initiatives.
Shunli Wang is a professor at Southwest University of Science and Technology, China. His research largely focuses on green and low-carbon energy storage in smart grids, and has won 13 awards including the second prize of the Automation Association, China.Yujie Wang is an associate professor at the University of Science and Technology of China. Wang specializes in research areas such as energy conservation and new energy vehicle technology, battery safety control, and digital twins. Xiao Yang is a doctoral student at Southwest Jiaotong University, China. His research focuses on battery safety management.Carlos Fernandez is a senior lecturer at Robert Gordon University, Scotland. His research interests include analytical chemistry, sensors and materials, and renewable energy.Josep M. Guerrero is a professor at the University of Aalborg, Denmark. His research interests include artificial intelligence based on neuroscience, digital twins, cybersecurity, blockchain and traded energy in maritime, aerospace, and space electrification.