Muutke küpsiste eelistusi

E-raamat: Fuzzy Lie Algebras

  • Formaat - EPUB+DRM
  • Hind: 123,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, vague sets and bipolar fuzzy sets. The book offers a valuable resource for students and researchers in mathematics, especially those interested in fuzzy Lie algebraic structures, as well as for other scientists.

Divided into 10 chapters, the book begins with a concise review of fuzzy set theory, Lie algebras and Lie superalgebras. In turn, Chap. 2 discusses several properties of concepts like interval-valued fuzzy Lie ideals, characterizations of Noetherian Lie algebras, quotient Lie algebras via interval-valued fuzzy Lie ideals, and interval-valued fuzzy Lie superalgebras. Chaps. 3 and 4 focus on various concepts of fuzzy Lie algebras, while Chap. 5 presents the concept of fuzzy Lie ideals of a Lie algebra over a fuzzy field. Chapter 6 is devoted to the properties of bipolar fuzzy Lie ideals, bipolar fuzzy Lie subsuperalgebras, bipolar fuzzy bracket product, solvable bipolar fuzzy Lie ideals and nilpotent bipolar fuzzy Lie ideals. Chap. 7 deals with the properties of m-polar fuzzy Lie subalgebras and m-polar fuzzy Lie ideals, while Chap. 8 addresses concepts like soft intersection Lie algebras and fuzzy soft Lie algebras. Chap. 9 deals with rough fuzzy Lie subalgebras and rough fuzzy Lie ideals, and lastly, Chap. 10 investigates certain properties of fuzzy subalgebras and ideals of n-ary Lie algebras.
1 Fuzzy Lie Structures
1(32)
1.1 Introduction
1(7)
1.1.1 Fuzzy Sets
1(4)
1.1.2 Lie Algebras
5(2)
1.1.3 Lie Superalgebras
7(1)
1.2 Fuzzy Lie Ideals
8(12)
1.3 Anti-fuzzy Lie Ideals
20(6)
1.4 Fuzzy Lie Sub-superalgebras
26(2)
1.5 Hesitant Fuzzy Lie Ideals
28(5)
2 Intuitionistic Fuzzy Lie Ideals
33(42)
2.1 Introduction
33(5)
2.2 Intuitionistic Fuzzy Lie Subalgebras
38(7)
2.3 Lie Homomorphism of Intuitionistic Fuzzy Lie Subalgebras
45(3)
2.4 Intuitionistic Fuzzy Lie Ideals
48(10)
2.5 Special Types of Intuitionistic Fuzzy Lie Ideals
58(3)
2.6 Intuitionistic (5, r)-Fuzzy Lie Ideals
61(5)
2.7 Nilpotency of Intuitionistic (5, r)-Fuzzy Lie Ideals
66(5)
2.8 Intuitionistic (5, T)-Fuzzy Killing Form
71(4)
3 Interval-Valued Fuzzy Lie Structures
75(32)
3.1 Introduction
75(2)
3.2 Interval-Valued Fuzzy Lie Ideals
77(4)
3.3 Characterizations of Noetherian Lie Algebras
81(2)
3.4 Quotient Lie Algebra via Interval-Valued Lie Ideals
83(2)
3.5 Interval-Valued Intuitionistic Fuzzy Lie Ideals
85(5)
3.6 Fully Invariant and Characteristic ITF Lie Ideals
90(2)
3.7 Solvable and Nilpotent ITF Lie Ideals
92(3)
3.8 Interval-Valued Fuzzy Lie Superalgebras
95(12)
4 Generalized Fuzzy Lie Subalgebras
107(36)
4.1 Introduction
107(1)
4.2 (a,)S)-Fuzzy Lie Subalgebras
108(3)
4.3 Implication-Based Fuzzy Lie Subalgebras
111(4)
4.4 (α,β)-Fuzzy Lie Subalgebras
115(9)
4.5 Interval-Valued (, Vg)-Fuzzy Lie Ideals
124(7)
4.6 Interval-Valued (,Vqm)-Fuzzy Lie Algebras
131(4)
4.7 (γ, δ)-Intuitionistic Fuzzy Lie Algebras
135(8)
5 Fuzzy Lie Structures Over a Fuzzy Field
143(32)
5.1 Introduction
143(2)
5.2 (, Vqm)-Fuzzy Lie Subalgebras Over a Fuzzy Field
145(8)
5.3 Vague Lie Subalgebras Over a Vague Field
153(7)
5.4 Special Types of Vague Lie Subalgebras
160(4)
5.5 Anti-fuzzy Lie Sub-superalgebras Over Anti-fuzzy Field
164(11)
6 Bipolar Fuzzy Lie Structures
175(28)
6.1 Introduction
175(5)
6.2 Bipolar Fuzzy Lie Ideals
180(8)
6.3 Bipolar Fuzzy Lie Sub-superalgebras
188(5)
6.4 Bipolar Fuzzy Bracket Product
193(4)
6.5 Solvable Bipolar Fuzzy Ideals and Nilpotent Bipolar Fuzzy Ideals
197(6)
7 m-Polar Fuzzy Lie Ideals
203(18)
7.1 Introduction
203(2)
7.2 m-Polar Fuzzy Lie Subalgebras
205(8)
7.3 m-Polar Fuzzy Lie Ideals
213(8)
8 Fuzzy Soft Lie Algebras
221(28)
8.1 Introduction
221(5)
8.1.1 Soft Sets
221(2)
8.1.2 Fuzzy Soft Sets
223(2)
8.1.3 Bipolar Fuzzy Soft Sets
225(1)
8.2 Soft Intersection Lie Algebras
226(7)
8.3 Fuzzy Soft Lie Algebras
233(6)
8.4 (α, α Vqβ)-Fuzzy Soft Lie Subalgebras
239(3)
8.5 Bipolar Fuzzy Soft Lie Algebras
242(2)
8.6 (, Vq)-Bipolar Fuzzy Soft Lie Algebras
244(5)
9 Rough Fuzzy Lie Algebras
249(24)
9.1 Introduction
249(5)
9.2 Rough Fuzzy Lie Ideals
254(10)
9.3 Fuzzy Rough Lie Algebras
264(3)
9.4 Rough lntuitionisuc Fuzzy Lie Algebras
267(6)
10 Fuzzy n-Lie Algebras
273(18)
10.1 Introduction
273(1)
10.2 Fuzzy Subalgebras and Ideals
274(8)
10.3 Fuzzy Quotient n-Lie Algebras
282(2)
10.4 Pythagorean Fuzzy n-Lie Algebras
284(7)
References 291(6)
Glossary of Symbols 297(2)
Index 299
MUHAMMAD AKRAM is a  Professor at the Department of Mathematics, University of the Punjab, Pakistan. He earned his PhD in fuzzy mathematics from the Government College University, Pakistan. His research interests include numerical algorithms, fuzzy graphs, fuzzy algebras, and fuzzy decision support systems. He has published five monographs and over 265 research articles in international peer-reviewed journals.