Muutke küpsiste eelistusi

E-raamat: Fuzzy Systems To Quantum Mechanics

(Beijing Normal Univ, Zhuhai, China)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 128,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This unique compendium represents important action of fuzzy systems to quantum mechanics. From fuzzy sets to fuzzy systems, it also gives clear descriptions on the development on fuzzy logic, where the most important result is the probability presentation of fuzzy systems. The important conclusions on fuzzy systems are used in the study of quantum mechanics, which is a very new idea. Eight important conclusions are obtained. The author has proved that mass-point motions in classical mechanics must have waves, which means that any mass-point motion in classical mechanics has wave mass-point dualism as well as any microscopic particle motion must have wave-particle dualism. Based on this conclusion, it has proven that classical mechanics and quantum mechanics are unified.

Preface v
Chapter 1 Fuzzy Sets
1(20)
1.1 Cantor's Sets
1(5)
1.2 Physical Significance for Cantor's Sets
6(2)
1.3 Background of Fuzzy Sets
8(6)
1.4 Definition and Operations of Fuzzy Sets
14(7)
References
20(1)
Chapter 2 Fuzzy Relations
21(45)
2.1 Cantor's Relations
21(7)
2.2 Definition of Fuzzy Relations
28(3)
2.3 Projections and Cross-section' Projections of Relations
31(4)
2.4 Projections and Cross-section' Projections of Fuzzy Relations
35(4)
2.5 Cantor's Set Transformations
39(3)
2.6 Fuzzy Set Transformations
42(3)
2.7 Ternary Relations and Their Projections and Cross-section' Projections
45(5)
2.8 Fuzzy Ternary Relations and Its Projections and Cross-section' Projections
50(4)
2.9 Fuzzy Set Transformations Based on Fuzzy Ternary Fuzzy Relations
54(4)
2.10 On Zadeh's Extension Principle
58(8)
References
65(1)
Chapter 3 Fuzzy Systems
66(27)
3.1 Structure of One-input One-output Fuzzy Systems
66(11)
3.2 Structure of Two-input One-output Fuzzy Systems
77(11)
3.3 Interpolation Mechanism of Fuzzy Systems
88(5)
References
91(2)
Chapter 4 Function Approximation Properties of Fuzzy Systems and Its Error Analysis
93(39)
4.1 Introduction
93(1)
4.2 Structures of Fuzzy Systems
93(10)
4.3 Function Approximation Properties of Fuzzy Systems
103(7)
4.4 The Approximation Remainder Estimation
110(8)
4.5 Error Estimation between Fuzzy Systems sn(x) and fn(x)
118(12)
4.7 Conclusions
130(2)
References
131(1)
Chapter 5 Probability Representations of Fuzzy Systems
132(73)
5.1 Background of Birth of Fuzzy Systems
132(3)
5.2 Sketch of Fuzzy Systems
135(4)
5.3 Probability Significance of Fuzzy Systems
139(10)
5.4 Several Typical Probability Distributions
149(12)
5.5 Probability Representations of Double-input and Single-output Fuzzy Systems
161(7)
5.6 The Probability Representations of Multi-input Multi-output Fuzzy Systems
168(13)
5.7 A Conclusion on Uniform Distributions in Fuzzy Systems
181(2)
5.8 Probability Representations of Fuzzy Systems Constructed by Triple I Method
183(18)
5.9 Conclusions
201(4)
References
202(3)
Chapter 6 Fuzzy System Representations of Stochastic Systems
205(63)
6.1 Introduction
205(1)
6.2 Sketch of Fuzzy Systems
205(3)
6.3 Fuzzy Reasoning Meaning of Stochastic Systems
208(14)
6.4 Fuzzy Reasoning Representations of Double-inputs Single-output Continuous Stochastic Systems
222(15)
6.5 Fuzzy Reasoning Representations of Discrete Stochastic Systems
237(6)
6.6 Reducibility in the Transformations between Fuzzy Systems and Stochastic Systems
243(6)
6.7 Uncertainty Systems with One Dimension Random Variables and their Representations
249(14)
6.8 Unification on Uncertainty Systems
263(1)
6.9 Conclusions
264(4)
References
266(2)
Chapter 7 The Normal Numbers of Fuzzy Systems and Their Classes
268(81)
7.1 Introduction
268(5)
7.2 R -- Fuzzy Sets
273(5)
7.3 R -- Fuzzy Implication Operations
278(1)
7.4 Fuzzy Systems Based on 1-Sets
279(11)
7.5 Normal Numbers of Fuzzy Systems
290(9)
7.6 Bernstein Fuzzy Systems
299(13)
7.7 Fitted Type Fuzzy Systems
312(4)
7.8 Hermite Fuzzy Systems and Collocation Factor Fuzzy Systems
316(17)
7.9 Normal Numbers of Hermite Fuzzy Systems
333(5)
7.10 Weighted Fuzzy Sets
338(6)
7.11 Conclusions
344(5)
Reference
346(3)
Chapter 8 Unified Theory of Classic Mechanics and Quantum Mechanics
349(68)
8.1 Introduction
349(1)
8.2 Quantum Mechanics Representation of Classic Mechanics
350(37)
8.3 Duality of Mass Point Motion
387(8)
8.4 An Important Mathematical Conclusion Generated by Theorem 8.2.1
395(3)
8.5 Approximation Theory Significance of Theorem 8.2.1
398(15)
8.6 Conclusions
413(4)
References
415(2)
Chapter 9 Unification of Riemann Integral and Lebesgue Integral
417(31)
9.1 Introduction
417(1)
9.2 On Riemann Integral
418(7)
9.3 On Lebesgue Integral
425(8)
9.4 Unification of Riemann Integral and Lebesgue Integral
433(3)
9.5 Riemann Integral of Continuous Functions
436(9)
9.6 Conclusions
445(3)
References
446(2)
Chapter 10 Fuzzy Systems with a Kind of Self-adaption
448(37)
10.1 Fuzzy Inference Relations with Self-adaption
448(7)
10.2 Fuzzy Systems with Self-adaption
455(7)
10.3 Approximation Properties of Fuzzy Systems with Self-adaption
462(13)
10.4 Examples
475(7)
10.5 Conclusions
482(3)
References
482(3)
Index 485