Muutke küpsiste eelistusi

E-raamat: Gas Turbine Propulsion Systems

(BAE Systems, UK), (Parker Aerospace Group, USA), (MIT), (University of Liverpool, UK), (GasTOPS Ltd., Ottawa, Canada)
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 12-Jul-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119975496
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 120,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 12-Jul-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119975496
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

‘Gas Turbine Propulsion Systems in Aerospace & Defense’ pulls together all of the systems and subsystems associated with gas turbine engines in aircraft and marine warship applications. The subject of engine (fuel) control has undergone major changes in the past 20 years due to the advent of the digital electronic control technology and therefore existing books on the subject are typically out of date with current methods. ‘Gas Turbine Propulsion Systems in Aerospace & Defense’ discusses the latest technologies in this area; including marine propulsion which is an emerging application area for the technology that involves some interesting modifications to aviation technologies. This book also fits well into the systems engineering focus of the Aerospace Series.Includes chapters on aircraft engine systems functional overview, marine propulsion systems, fuel control and power management systems, engine lubrication and scavenging systems, nacelle and ancillary systems, engine certification, unique engine systems and future developments in gas turbine propulsion systemsIncludes case studies of specific engines Includes applications within marine defenceAccompanied by a book companion website featuring full colour images

Arvustused

Highly recommended.  Upper-division undergraduates and above. (Choice, 1 March 2012)

About the Authors x
Preface xii
Series Preface xiv
Acknowledgements xvi
List of Acronyms
xviii
1 Introduction
1(10)
1.1 Gas Turbine Concepts
1(5)
1.2 Gas Turbine Systems Overview
6(5)
References
9(2)
2 Basic Gas Turbine Operation
11(26)
2.1 Turbojet Engine Performance
11(24)
2.1.1 Engine Performance Characteristics
18(4)
2.1.2 Compressor Surge Control
22(6)
2.1.3 Variable Nozzles
28(7)
2.2 Concluding Commentary
35(2)
References
35(2)
3 Gas Generator Fuel Control Systems
37(52)
3.1 Basic Concepts of the Gas Generator Fuel Control System
37(3)
3.2 Gas Generator Control Modes
40(25)
3.2.1 Fuel Schedule Definition
42(3)
3.2.2 Overall Gas Generator Control Logic
45(1)
3.2.3 Speed Governing with Acceleration and Deceleration Limiting
46(16)
3.2.4 Compressor Geometry Control
62(1)
3.2.5 Turbine Gas Temperature Limiting
63(2)
3.2.6 Over speed Limiting
65(1)
3.3 Fuel System Design and Implementation
65(12)
3.3.1 A Historical Review of Fuel Control Technologies
67(5)
3.3.2 Fuel Pumping and Metering Systems
72(5)
3.4 The Concept of Error Budgets in Control Design
77(7)
3.4.1 Measurement Uncertainty
79(1)
3.4.2 Sources of Error
80(4)
3.5 Installation, Qualification, and Certification Considerations
84(4)
3.5.1 Fuel Handling Equipment
84(2)
3.5.2 Full-authority Digital Engine Controls (FADEC)
86(2)
3.6 Concluding Commentary
88(1)
References
88(1)
4 Thrust Engine Control and Augmentation Systems
89(16)
4.1 Thrust Engine Concepts
89(3)
4.2 Thrust Management and Control
92(3)
4.3 Thrust Augmentation
95(10)
4.3.1 Water Injection
96(1)
4.3.2 Afterburning
97(6)
Reference
103(2)
5 Shaft Power Propulsion Control Systems
105(26)
5.1 Turboprop Applications
110(9)
5.1.1 The Single-shaft Engine
110(2)
5.7.2 The Free Turbine Turboprop
112(7)
5.2 Turboshaft Engine Applications
119(12)
Reference
130(1)
6 Engine Inlet, Exhaust, and Nacelle Systems
131(30)
6.1 Subsonic Engine Air Inlets
131(5)
6.1.1 Basic Principles
132(1)
6.1.2 Turboprop Inlet Configurations
133(2)
6.1.3 Inlet Filtration Systems
135(1)
6.2 Supersonic Engine Air Inlets
136(14)
6.2.1 Oblique Shockwaves
137(2)
6.2.2 Combined Oblique/Normal Shock Pressure Recovery Systems
139(2)
6.2.3 Supersonic Inlet Control
141(2)
6.2.4 Overall System Development and Operation
143(1)
6.2.5 Concorde Air Inlet Control System (AICS) Example
144(6)
6.3 Inlet Anti-icing
150(1)
6.3.1 Bleed-air Anti-icing Systems
151(1)
6.3.2 Electrical And-icing Systems
151(1)
6.4 Exhaust Systems
151(10)
6.4.1 Thrust Reversing Systems
152(3)
6.4.2 Thrust Vectoring Concepts
155(5)
References
160(1)
7 Lubrication Systems
161(20)
7.1 Basic Principles
161(8)
7.2 Lubrication System Operation
169(12)
7.2.1 System Design Concept
170(4)
7.2.2 System Design Considerations
174(1)
7.2.3 System Monitoring
175(4)
7.2.4 Ceramic Bearings
179(1)
References
179(2)
8 Power Extraction and Starting Systems
181(14)
8.1 Mechanical Power Extraction
181(6)
8.1.1 Fuel Control Systems Equipment
181(2)
8.1.2 Hydraulic Power Extraction
183(1)
8.1.3 Lubrication and Scavenge Pumps
184(1)
8.1.4 Electrical Power Generation
184(3)
8.2 Engine Starting
187(2)
8.3 Bleed-air-powered Systems and Equipment
189(6)
8.3.1 Bleed-air-driven Pumps
191(1)
8.3.2 Bleed Air for Environmental Control, Pressurization and Anti-icing Systems
192(1)
8.3.3 Fuel Tank Inerting
193(1)
References
194(1)
9 Marine Propulsion Systems
195(32)
9.1 Propulsion System Designation
197(1)
9.2 The Aero-derivative Gas Turbine Engine
198(1)
9.3 The Marine Environment
199(7)
9.3.1 Marine Propulsion Inlets
200(3)
9.3.2 Marine Exhaust Systems
203(1)
9.3.3 Marine Propellers
204(2)
9.4 The Engine Enclosure
206(3)
9.4.1 The Engine Support System
207(1)
9.4.2 Enclosure Air Handling
208(1)
9.4.3 Enclosure Protection
208(1)
9.5 Engine Ancillary Equipment
209(5)
9.5.1 Engine Starting System
209(2)
9.5.2 Engine Lubrication System
211(1)
9.5.3 Fuel Supply System
212(2)
9.6 Marine Propulsion Control
214(10)
9.6.1 Ship Operations
214(3)
9.6.2 Overall Propulsion Control
217(2)
9.6.3 Propulsion System Monitoring
219(3)
9.6.4 Propulsion System Controller
222(2)
9.6.5 Propulsion System Sequencer
224(1)
9.7 Concluding Commentary
224(3)
References
225(2)
10 Prognostics and Health Monitoring Systems
227(30)
10.1 Basic Concepts in Engine Operational Support Systems
229(5)
10.1.1 Material Life Limits
229(3)
10.1.2 Performance-related Issues
232(2)
10.1.3 Unscheduled Events
234(1)
10.2 The Role of Design in Engine Maintenance
234(9)
10.2.1 Reliability
235(2)
10.2.2 Maintainability
237(2)
10.2.5 Availability
239(2)
10.2.4 Failure Mode, Effects, and Criticality Analysis
241(2)
10.3 Prognostics and Health Monitoring (PHM)
243(14)
10.3.1 The Concept of a Diagnostic Algorithm
244(1)
10.3.2 Qualification of a Fault Indicator
245(5)
10.3.3 The Element of Time in Diagnostics
250(1)
10.3.4 Data Management Issues
251(4)
References
255(2)
11 New and Future Gas Turbine Propulsion System Technologies
257(22)
11.1 Thermal Efficiency
257(3)
11.2 Improvements in Propulsive Efficiency
260(8)
11.2.1 The Pratt & Whitney PW1000G Geared Turbofan Engine
261(3)
11.2.2 The CFM International Leap Engine
264(1)
11.2.5 The Propfan Concept
265(3)
11.3 Other Engine Technology Initiatives
268(11)
11.3.1 The Boeing 787 Bleedless Engine Concept
268(3)
11.3.2 New Engine Systems Technologies
271(5)
11.5.5 Emergency Power Generation
276(1)
11.3.4 On-board Diagnostics
277(1)
References
277(2)
Appendix A Compressor Stage Performance
279(6)
A.1 The Origin of Compressor Stage Characteristics
279(2)
A.2 Energy Transfer from Rotor to Air
281(4)
References
284(1)
Appendix B Estimation of Compressor Maps
285(10)
B.1 Design Point Analysis
288(3)
B.2 Stage Stacking Analysis
291(4)
References
293(2)
Appendix C Thermodynamic Modeling of Gas Turbines
295(12)
C.1 Linear Small-perturbation Modeling
295(3)
C.1.1 Rotor Dynamics
296(1)
C.1.2 Rotor Dynamics with Pressure Term
297(1)
C.1.5 Pressure Dynamics
298(1)
C.2 Full-range Model: Extended Linear Approach
298(1)
C.3 Component-based Thermodynamic Models
299(8)
C.3.1 Inlet
301(1)
C.3.2 Compressor
302(1)
C.3.3 Combustor
302(2)
C.3.4 Turbine
304(1)
C.3.5 Jet Pipe
305(1)
C.3.6 Nozzle
306(1)
C.3.7 Rotor
306(1)
References
306(1)
Appendix D Introduction to Classical Feedback Control
307(16)
D.1 Closing the Loop
307(1)
D.2 Block Diagrams and Transfer Functions
308(2)
D.3 The Concept of Stability
310(1)
D.3.1 The Rule for Stability
310(1)
D.4 Frequency Response
311(4)
D.4.1 Calculating Frequency Response
311(4)
D.5 Laplace Transforms
315(8)
D.5.1 Root Locus
317(1)
D.5.2 Root Locus Construction Rules
318(3)
Reference
321(2)
Index 323
Bernie MacIsaac is President and CEO of GasTOPS Ltd. in Ottawa, Canada.

Roy Langton has recently retired from his position as Vice-President, Engineering & Integrity at Parker Aerospace, where he was responsible for internal seminars & training into feedback control. He is now a technology consultant for Parker, and has also recently been appointed as an editor for the Wiley Aerospace Series.