Muutke küpsiste eelistusi

E-raamat: Gelfand Triples and Their Hecke Algebras: Harmonic Analysis for Multiplicity-Free Induced Representations of Finite Groups

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2267
  • Ilmumisaeg: 25-Sep-2020
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030516079
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2267
  • Ilmumisaeg: 25-Sep-2020
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030516079

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph is the first comprehensive treatment of multiplicity-free induced representations of finite groups as a generalization of finite Gelfand pairs. Up to now, researchers have been somehow reluctant to face such a problem in a general situation, and only partial results were obtained in the one-dimensional case. Here, for the first time, new interesting and important results are proved. In particular, after developing a general theory (including the study of the associated Hecke algebras and the harmonic analysis of the corresponding spherical functions), two completely new highly nontrivial and significant examples (in the setting of linear groups over finite fields) are examined in full detail. The readership ranges from graduate students to experienced researchers in Representation Theory and Harmonic Analysis.

Arvustused

The volume is an interesting and important contribution to the theory of multiplicity-free representations of finite groups and their spherical functions. (Antoni Wawrzyczyk, Mathematical Reviews, June, 2023)

- Preliminaries. - Hecke Algebras. - Multiplicity-Free Triples. - The
Case of a Normal Subgroup. - Harmonic Analysis of the Multiplicity-Free
Triple (GL(2, Fq),C, ). - Harmonic Analysis of the Multiplicity-Free
Triple (GL(2, Fq2),GL(2, Fq), ). - Appendix A.
Tullio Ceccherini-Silberstein obtained his BS in Mathematics (1990) from the University of Rome La Sapienza and his PhD in Mathematics (1994) from UCLA. Currently, he is professor of Mathematical Analysis at the University of Sannio (Benevento). He is an Editor of the EMS journal Groups, Geometry, and Dynamics. He has authored more than 90 research articles in Functional and Harmonic Analysis, Group Theory, Ergodic Theory and Dynamical Systems, and Theoretical Computer Science and has co-authored 5 monographs on Harmonic Analysis and Representation Theory.  Fabio Scarabotti obtained his BS in Mathematics (1989) and his PhD in Mathematics (1994) from the University of Rome La Sapienza.  Currently, he is professor of Mathematical Analysis at the University of Rome La Sapienza. He has authored more than 40 research articles in Harmonic Analysis, Group Theory, Combinatorics, Ergodic Theory and Dynamical Systems, and TheoreticalComputer Science and has co-authored 4 monographs on Harmonic Analysis and Representation Theory. Filippo Tolli obtained his BS in Mathematics (1991) from the University of Rome La Sapienza and his PhD in Mathematics (1996) from UCLA. Currently, he is professor of Mathematical Analysis at the University of Roma Tre. He has authored more than 30 research articles in Harmonic Analysis, Group Theory, Combinatorics, Lie Groups and Partial Differential Equations and has co-authored 4 monographs on Harmonic Analysis and Representation Theory.