Muutke küpsiste eelistusi

E-raamat: Gene Regulatory Mechanisms in Development and Evolution: Insights from Echinoderms

Volume editor (Charles A. Ettensohn, Professor of Biological Sciences at Carnegie Mellon University (Pittsburgh, USA))
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 174,72 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Sea urchins and other echinoderms, which have been studied intensively by developmental biologists for more than a century, are currently among the most prominent models for elucidating the genomic regulatory processes that control embryogenesis and the evolution of those processes. This volume contains reviews from the world’s leading researchers who are using echinoderms to address these questions. Chapters focus on gene regulatory networks that drive the differentiation and morphogenesis of major embryonic tissues such as the skeleton, muscle, nervous system, immune system, pigment cells, and germ line, and on evolutionary insights from comparative studies of these networks across echinoderms and other taxa. Other chapters comprehensively review the architecture and evolution of the cell signaling pathways that establish the early embryonic axes and on recent evolutionary changes in gene networks that have led to dramatic changes in the life history modes of echinoderms. This volume provides a comprehensive, current picture of exciting research at the interface between developmental genomics and evolution from one of the research communities leading this work.
  • Contributions from leading investigators who use echinoderms as model organisms
  • Up-to-date reviews of developmental gene regulatory networks
  • Current work at the interface between developmental genomics and evolution
Contributors ix
Preface xi
1 Perspectives on divergence of early developmental regulatory pathways: Insight from the evolution of echinoderm double negative gate
1(24)
Nina Levin
Shumpei Yamakawa
Yoshiaki Morino
Hiroshi Wada
1 Introduction
2(1)
2 Echinoderm mesoderm specification pathways
3(7)
3 Evolution of echinoderm double negative gate
10(4)
4 Stepwise and gradual modification behind the drastic divergence of hesC function
14(2)
5 Overview of early developmental innovations in other organisms
16(4)
6 Conclusions and further insights
20(5)
References
21(4)
2 Development of a larval nervous system in the sea urchin
25(24)
David R. McClay
1 Development and anatomy of the sea urchin larval nervous system
27(1)
2 Patterning the anterior neurectoderm (ANE)
27(4)
3 Neurogenesis in the ANE
31(2)
4 Patterning the ciliary band domain
33(2)
5 Neural specification in and near the ciliary band
35(4)
6 Patterning the endomesoderm
39(1)
7 Specification of neurons originating along the gut
40(1)
8 A functional nervous system in the larva
41(2)
9 Conclusion
43(6)
Acknowledgments
43(1)
References
43(6)
3 Post-transcriptional regulation of factors important for the germ line
49(30)
Nathalie Oulhen
Shumpei Morita
Gary M. Wessel
1 Introduction
50(9)
2 Multiple transcripts from the same gene
59(2)
3 The differential regulation of mRNAs encoding germline factors
61(3)
4 Translational regulation of the germ line and their factors
64(2)
5 Turnover of germline proteins
66(3)
6 What does all this mean in terms of the germline vs somatic cell fates?
69(10)
References
72(7)
4 Extreme phenotypic divergence and the evolution of development
79(34)
Gregory A. Wray
1 Introduction
80(1)
2 Studying developmental evolution
81(5)
3 Life history and the evolution of development
86(6)
4 Evolution of developmental processes within Heliocidaris
92(12)
5 Conclusions
104(9)
Acknowledgments
107(1)
References
107(6)
5 Lessons from a transcription factor: Alxl provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution
113(36)
Charles A. Ettensohn
Jennifer Guerrero-Santoro
Jian Ming Khor
1 Introduction
114(1)
2 The alxl gene and protein
114(9)
3 Alxl and gene regulatory network (GRN) architecture
123(12)
4 Alxl and other developmental and evolutionary processes
135(4)
5 Conclusions
139(10)
Acknowledgments
140(1)
References
140(9)
6 Pigment cells: Paragons of cellular development
149(34)
Robert D. Burke
1 Introduction
150(1)
2 Pigment cells are a distinct mesodermal lineage
151(2)
3 Pigment cell precursors transition to mesenchyme, migrate, and re-insert in epithelium
153(3)
4 Spl and NCAM
156(3)
5 Pigment cells and archenteron formation
159(1)
6 Localized maternal factors in the egg lead to short range signals that cause differentiation of pigment cells
160(4)
7 A network of interacting genes controls pigment cell differentiation
164(2)
8 Detailed descriptions of lineage specific genes provide insights into the enigmatic functions of pigment cells
166(4)
9 Pigment cells as immunocytes
170(2)
10 Conclusions
172(11)
Acknowledgments
176(1)
References
176(7)
7 Dorsal-ventral axis formation in sea urchin embryos
183(28)
Yi-Hsien Su
1 Introduction
184(2)
2 DV morphological differences during planktotrophic sea urchin embryogenesis
186(2)
3 Oxidase activity is related to the sea urchin dorsoventral axis
188(1)
4 Molecular mechanisms patterning the planktotrophic sea urchin DV axis
189(11)
5 DV patterning in lecithotrophic sea urchins
200(2)
6 Evolution of DV patterning in sea urchins
202(2)
7 Conclusions
204(7)
Acknowledgments
204(1)
References
204(7)
8 Micromere formation and its evolutionary implications in the sea urchin
211(21)
Natsuko Emura
Mamiko Yajima
1 Introduction
212(3)
2 Micromere formation in the sea urchin embryo
215(2)
3 Unique properties of the micromere
217(7)
4 Mechanism of micromere formation through asymmetric cell division
224(5)
5 Unique transcriptional and translational activity of the micromere and its descendants
229(2)
6 Conclusions and perspectives
231(1)
Acknowledgment 232(1)
References 232
Dr. Charles A. Ettensohn, Professor of Biological Sciences at Carnegie Mellon University (Pittsburgh, USA), is one of the worlds leading researchers using sea urchins and other echinoderms as experimental models to study mechanisms of embryogenesis. Over the past 30 years his laboratory has made major contributions to developmental biology. His current work focuses on the architecture, function, and evolution of developmental gene regulatory networks, with the overarching goal of elucidating the genetic control of anatomy. Dr. Ettensohn has authored more than 80 peer-reviewed articles, co-organized multiple international conferences on echinoderm development, and currently serves on the editorial boards of BMC Genomics, Genesis, and Faculty of 1000 (Biology).