Muutke küpsiste eelistusi

E-raamat: General Algebraic Semantics for Sentential Logics

(Universitat de Barcelona), (Universitat de Barcelona)
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Logic
  • Ilmumisaeg: 02-Mar-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316731574
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 137,07 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Logic
  • Ilmumisaeg: 02-Mar-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316731574
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the seventh publication in the Lecture Notes in Logic series, Font and Jansana develop a very general approach to the algebraization of sentential logics and present its results on a number of particular logics. The authors compare their approach, which uses abstract logics, to the classical approach based on logical matrices and the equational consequence developed by Blok, Czelakowski, Pigozzi and others. This monograph presents a systematized account of some of the work on the algebraic study of sentential logics carried out by the logic group in Barcelona in the 1970s.

Muu info

An exposition of the approach to the algebraization of sentential logics developed by the Barcelona logic group.
Introduction 1(14)
Chapter 1 Generalities on abstract logics and sentential logics
15(16)
Chapter 2 Abstract logics as models of sentential logics
31(28)
2.1 Models and full models
31(5)
2.2 S-algebras
36(4)
2.3 The lattice of full models over an algebra
40(5)
2.4 Full models and metalogical properties
45(14)
Chapter 3 Applications to protoalgebraic and algebraizable logics
59(16)
Chapter 4 Abstract logics as models of Gentzen systems
75(30)
4.1 Gentzen systems and their models
76(10)
4.2 Selfextensional logics with Conjunction
86(9)
4.3 Selfextensional logics having the Deduction Theorem
95(10)
Chapter 5 Applications to particular sentential logics
105(26)
5.1 Some non-protoalgebraic logics
107(7)
5.1.1 CPCΛΛ, the {Λ, Λ}-fragment of Classical Logic
107(3)
5.1.2 The logic of lattices
110(1)
5.1.3 Belnap's four-valued logic, and other related logics
111(2)
5.1.4 The implication-less fragment of IPC and its extensions
113(1)
5.2 Some Fregean algebraizable logics
114(3)
5.2.1 Alternative Gentzen systems adequate for IPC→ not having the full Deduction Theorem
116(1)
5.3 Some modal logics
117(4)
5.3.1 A logic without a strongly adequate Gentzen system
121(1)
5.4 Other miscellaneous examples
121(10)
5.4.1 Two relevance logics
122(1)
5.4.2 Sette's paraconsistent logic
123(2)
5.4.3 Tetravalent modal logic
125(1)
5.4.4 Cardinality restrictions in the Deduction Theorem
126(5)
Bibliography 131(12)
Symbol index 143(4)
General index 147
Josep Maria Font works in the Department of Probability, Logic and Statistics at the University of Barcelona. Ramon Jansana works in the Department of Logic, History and Philosophy of Science at the University of Barcelona.