|
Part I Parameter Estimation |
|
|
|
1 Probability Distributions |
|
|
3 | (18) |
|
1.1 The Maxwell Distribution |
|
|
3 | (1) |
|
1.2 Probability Distributions in Phase Space |
|
|
4 | (1) |
|
1.3 The Boltzmann-Gibbs Distribution |
|
|
5 | (1) |
|
1.4 A Gas of Particles in the Canonical Ensemble |
|
|
6 | (2) |
|
1.5 Additional Conserved Quantities |
|
|
8 | (2) |
|
1.6 The Grand-Canonical Ensemble |
|
|
10 | (2) |
|
|
12 | (2) |
|
1.8 The von Neumann Density Operator |
|
|
14 | (2) |
|
1.9 Fermi-Dirac and Bose-Einstein Distributions |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (16) |
|
|
21 | (2) |
|
2.2 Definition of a Statistical Model |
|
|
23 | (2) |
|
2.3 The Exponential Family |
|
|
25 | (2) |
|
2.4 Curved Exponential Families |
|
|
27 | (2) |
|
2.5 Example: The Ising Model in d=1 |
|
|
29 | (2) |
|
2.6 The Density of States |
|
|
31 | (1) |
|
2.7 The Quantum Exponential Family |
|
|
32 | (2) |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
36 | (1) |
|
3 Thermodynamic Equilibrium |
|
|
37 | (16) |
|
3.1 Thermodynamic Configuration Space |
|
|
37 | (1) |
|
3.2 Maximum Entropy Principle |
|
|
38 | (1) |
|
3.3 BGS Entropy Functional |
|
|
39 | (2) |
|
3.4 Applying the Method of Lagrange |
|
|
41 | (1) |
|
3.5 Thermodynamic Entropy |
|
|
42 | (2) |
|
|
44 | (1) |
|
3.7 Thermodynamic Stability |
|
|
45 | (2) |
|
3.8 Entropy of Probability Densities |
|
|
47 | (1) |
|
|
47 | (2) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (2) |
|
4 The Microcanonical Ensemble |
|
|
53 | (16) |
|
|
53 | (1) |
|
|
54 | (1) |
|
4.3 Example: The Harmonic Oscillator |
|
|
55 | (1) |
|
|
56 | (1) |
|
4.5 Microcanonical Instabilities |
|
|
57 | (5) |
|
4.6 The Quantum Microcanonical Ensemble |
|
|
62 | (2) |
|
4.7 The Coherent State Ensemble |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
67 | (2) |
|
|
69 | (10) |
|
|
69 | (1) |
|
5.2 The Canonical Ensemble |
|
|
70 | (1) |
|
|
71 | (3) |
|
|
74 | (1) |
|
5.5 Properties of the Hyperensemble |
|
|
75 | (2) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
78 | (1) |
|
6 The Mean Field Approximation |
|
|
79 | (16) |
|
|
79 | (2) |
|
6.2 The Mean Field Equation |
|
|
81 | (1) |
|
|
82 | (1) |
|
6.4 A Mean Field Phase Transition |
|
|
83 | (3) |
|
6.5 A Hyperensemble of Product States |
|
|
86 | (1) |
|
6.6 Generalised Mean Field Theories |
|
|
86 | (3) |
|
|
89 | (2) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
91 | (4) |
|
Part II Deformed Exponential Families |
|
|
|
7 q-Deformed Distributions |
|
|
95 | (20) |
|
7.1 q-Deformed Exponential and Logarithmic Functions |
|
|
95 | (2) |
|
|
97 | (1) |
|
7.3 The q-Exponential Family |
|
|
98 | (2) |
|
|
100 | (1) |
|
7.5 q-to-1/q Duality and Escort Families |
|
|
101 | (1) |
|
|
102 | (1) |
|
7.7 The q-Gaussian Distribution |
|
|
103 | (3) |
|
7.8 Configurational Probability Distribution |
|
|
106 | (2) |
|
7.9 Average Kinetic Energy |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
110 | (2) |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
113 | (2) |
|
8 Tsallis' Thermostatistics |
|
|
115 | (16) |
|
8.1 The Tsallis Entropy Functional |
|
|
115 | (2) |
|
8.2 A Historical Reflection |
|
|
117 | (1) |
|
8.3 Maximising the Tsallis Entropy Functional |
|
|
118 | (1) |
|
8.4 Thermodynamic Properties |
|
|
119 | (2) |
|
8.5 Example: The Two-Level Atom |
|
|
121 | (2) |
|
8.6 Relative Entropy of the Csiszar Type |
|
|
123 | (1) |
|
8.7 Relative Entropy of the Bregman Type |
|
|
124 | (3) |
|
|
127 | (1) |
|
8.9 More General Entropies |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
131 | (18) |
|
9.1 Kolmogorov-Nagumo Averages |
|
|
131 | (1) |
|
9.2 Renyi's Alpha Entropies |
|
|
132 | (1) |
|
|
133 | (2) |
|
9.4 Configurational Temperature |
|
|
135 | (2) |
|
|
137 | (3) |
|
9.6 Microcanonical Description |
|
|
140 | (3) |
|
9.7 Sharma-Mittal Entropy Functional |
|
|
143 | (2) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (16) |
|
10.1 Deformed Exponential and Logarithmic Functions |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
151 | (2) |
|
10.4 The Phi-Exponential Family |
|
|
153 | (1) |
|
10.5 Escort Probabilities |
|
|
153 | (2) |
|
10.6 Method to Test Phi-Exponentiality |
|
|
155 | (2) |
|
10.7 Example: The Site Percolation Problem |
|
|
157 | (3) |
|
10.8 Generalised Quantum Statistics |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
162 | (1) |
|
|
162 | (3) |
|
|
165 | (14) |
|
11.1 The Entropy Functional |
|
|
165 | (1) |
|
|
166 | (1) |
|
11.3 The Variational Principle |
|
|
167 | (2) |
|
|
169 | (1) |
|
11.5 Application to q-Deformed Distributions |
|
|
170 | (1) |
|
11.6 Deformed Fisher Information |
|
|
171 | (2) |
|
|
173 | (1) |
|
|
174 | (2) |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
178 | (1) |
Solutions to the Problems |
|
179 | (20) |
Index |
|
199 | |