Muutke küpsiste eelistusi

E-raamat: Generalization With Deep Learning: For Improvement On Sensing Capability

Edited by (Institute For Infocomm Research, S'pore), Edited by (A*star, Singapore), Edited by (Institute For Infocomm Research, S'pore)
  • Formaat: 324 pages
  • Ilmumisaeg: 07-Apr-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811218859
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 87,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 324 pages
  • Ilmumisaeg: 07-Apr-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811218859
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Deep Learning has achieved great success in many challenging research areas, such as image recognition and natural language processing. The key merit of deep learning is to automatically learn good feature representation from massive data conceptually. In this book, we will show that the deep learning technology can be a very good candidate for improving sensing capabilities. In this edited volume, we aim to narrow the gap between human and machine by showcasing various deep learning applications in thearea of sensing. The book will cover the fundamentals of deep learning techniques and their applications in real-world problems including activity sensing, remote sensing and medical sensing. It will demonstrate how different deep learning techniques help to improve the sensing capabilities and enable scientists and practitioners to make insightful observations and generate invaluable discoveries from different types of data"--

Deep Learning has achieved great success in many challenging research areas, such as image recognition and natural language processing. The key merit of deep learning is to automatically learn features from massive data conceptually. This technology can be a good candidate for human activity recognition. However, many challenging research problems in terms of accuracy, device heterogeneous, environment changes, etc. remain unsolved.

About the Editors v
Preface vii
Part I Introduction of Deep Learning Algorithms
1(28)
Chapter 1 An Introduction of Deep Learning Methods for Sensing Applications
3(26)
Keyu Wu
Wei Cui
Vuong Nhu Khue
Efe Camci
Part II Deep Learning for Activity Sensing
29(128)
Chapter 2 Hierarchically Aggregated Deep Convolutional Neural Networks for Action Recognition
31(24)
Le Zhang
Jagannadan Varadarajan
Tong Pei
Zhenghua Chen
Chapter 3 Combining Domain Knowledge and Deep Learning to Improve HAR Models
55(24)
Massinissa Hamidi
Aomar Osmani
Chapter 4 Deep Learning and Unsupervised Domain Adaptation for WiFi-based Sensing
79(22)
Jianfei Tang
Han Zou
Lihua Xie
Costas J. Spanos
Chapter 5 Deep Learning for Device-free Human Activity Recognition Using WiFi Signals
101(38)
Linlin Guo
Hang Zhang
Weiyu Guo
Jian Fang
Bingxian Lu
Chenfei Ma
Guanglin Li
Chuang Lin
Lei Wang
Chapter 6 Graph Convolutional Neural Network for Skeleton-based Video Abnormal Behavior Detection
139(18)
Weixin Luo
Wen Liu
Shenghua Gao
Part III Deep Learning for Remote Sensing
157(76)
Chapter 7 Perspective on Deep Learning for Earth Sciences
159(16)
Gustau Camps-Vails
Chapter 8 Accurate Detection of Built-Up Areas in Remote Sensing Image via Deep Learning
175(34)
Tihua Tan
Shengzhou Xiong
Pet Tan
Chapter 9 Recent Advances of Manifold-based Graph Convolutional Networks for Remote Sensing Images Recognition
209(24)
Sichao Fu
Weifeng Liu
Part IV Deep Learning for Medical Sensing
233(70)
Chapter 10 Deep Retinal Image Non-Uniform Illumination Removal
235(24)
Chongyi Li
Huazhu Fu
Miao Tang
Runmin Cong
Chunle Guo
Chapter 11 A Comparative Analysis of Efficient CNN-based Brain Tumor Classification Models
259(20)
Tanveer Hussain
Amin Ullah
Umair Haroon
Khan Muhammad
Sung Wook Baik
Chapter 12 Classification of Travel Patterns Including Wandering Based on Bi-directional Long Short-Term Memory Networks
279(24)
Nhu Khue Vuong
Tong Liu
Syin Chan
Chiew Tong Lau
Zhenghua Chen
Min Wu
Xiaoli Li
Index 303