Preface |
|
xv | |
Contributors |
|
xix | |
Section I Theoretical Foundations |
|
1 | (94) |
|
Chapter 1 Barycentric Coordinates and Their Properties |
|
|
3 | (20) |
|
|
|
4 | (2) |
|
1.1.1 Barycentric coordinates for simplices |
|
|
5 | (1) |
|
1.1.2 Generalized barycentric coordinates |
|
|
5 | (1) |
|
|
6 | (14) |
|
1.2.1 Wachspress coordinates |
|
|
7 | (1) |
|
1.2.2 Discrete harmonic coordinates |
|
|
8 | (1) |
|
1.2.3 Mean value coordinates |
|
|
8 | (1) |
|
1.2.4 Complete family of coordinates |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.2.6 Poisson coordinates |
|
|
10 | (1) |
|
1.2.7 Gordon-Wixom coordinates |
|
|
10 | (1) |
|
1.2.8 Harmonic coordinates |
|
|
11 | (1) |
|
1.2.9 Maximum entropy coordinates |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.2.11 Affine coordinates |
|
|
12 | (1) |
|
1.2.12 Sibson coordinates |
|
|
12 | (1) |
|
1.2.13 Laplace coordinates |
|
|
13 | (1) |
|
1.2.14 Hermite coordinates |
|
|
13 | (1) |
|
1.2.15 Complex coordinates |
|
|
14 | (1) |
|
|
14 | (6) |
|
|
20 | (4) |
|
1.3.1 Wachspress coordinates |
|
|
20 | (1) |
|
1.3.2 Discrete harmonic coordinates |
|
|
21 | (1) |
|
1.3.3 Mean value coordinates |
|
|
21 | (1) |
|
1.3.4 Complete family of coordinates |
|
|
22 | (1) |
|
|
22 | (1) |
|
Chapter 2 Shape Quality for Generalized Barycentric Interpolation |
|
|
23 | (20) |
|
|
|
|
24 | (2) |
|
2.2 Deconstructing The A Priori Error Estimate |
|
|
26 | (3) |
|
2.3 Shape Quality Metrics For Simplices |
|
|
29 | (2) |
|
2.4 Shape Quality Metrics For Polygons And Polyhedra |
|
|
31 | (3) |
|
2.5 Interpolation Error Estimates On Polygons |
|
|
34 | (5) |
|
2.5.1 Triangulation coordinates |
|
|
34 | (1) |
|
2.5.2 Harmonic coordinates |
|
|
35 | (2) |
|
2.5.3 Wachspress coordinates |
|
|
37 | (2) |
|
2.5.4 Mean value coordinates |
|
|
39 | (1) |
|
2.6 Interpolation Error Estimates On Polyhedra And Polytopes |
|
|
39 | (2) |
|
2.6.1 Harmonic coordinates in 3D and higher |
|
|
40 | (1) |
|
2.6.2 Wachspress coordinates in 3D and higher |
|
|
40 | (1) |
|
2.7 Extensions And Future Directions |
|
|
41 | (2) |
|
Chapter 3 Transfinite Barycentric Coordinates |
|
|
43 | (20) |
|
|
|
|
44 | (1) |
|
3.2 Weighted Mean Value Interpolation |
|
|
45 | (6) |
|
3.2.1 General construction |
|
|
45 | (2) |
|
3.2.2 Transfinite three-point coordinates |
|
|
47 | (1) |
|
3.2.3 Transfinite Laplace coordinates |
|
|
48 | (1) |
|
3.2.4 Transfinite Wachspress coordinates |
|
|
49 | (2) |
|
3.2.5 Transfinite Laplace and Wachspress coordinates coincide for a disk |
|
|
51 | (1) |
|
3.3 Gordon-Wixom Interpolation |
|
|
51 | (6) |
|
3.3.1 Lagrange-type Gordon-Wixom interpolation |
|
|
51 | (3) |
|
3.3.2 Hermite-type Gordon-Wixom interpolation |
|
|
54 | (1) |
|
3.3.3 Modified Hermite-type Gordon-Wixom interpolation |
|
|
55 | (1) |
|
3.3.4 Modified Gordon-Wixom for polyharmonic interpolation |
|
|
56 | (1) |
|
3.4 Generalized Mean Value Potentials And Distance Function Approximations |
|
|
57 | (7) |
|
3.4.1 Generalized mean value potentials for smooth domains |
|
|
57 | (4) |
|
3.4.2 Generalized potentials for polygons |
|
|
61 | (2) |
|
Chapter 4 Barycentric Mappings |
|
|
63 | (14) |
|
|
|
64 | (2) |
|
|
64 | (1) |
|
|
65 | (1) |
|
4.2 Bijective Barycentric Mapping |
|
|
66 | (2) |
|
4.2.1 Perturbed target polygons |
|
|
66 | (2) |
|
4.3 Bijective Composite Barycentric Mapping |
|
|
68 | (3) |
|
4.3.1 Limit of composite barycentric mappings |
|
|
70 | (1) |
|
|
71 | (4) |
|
4.4.1 Closed planar curves |
|
|
71 | (2) |
|
|
73 | (2) |
|
4.5 Practical Considerations |
|
|
75 | (2) |
|
4.5.1 Choosing the coordinates |
|
|
75 | (1) |
|
4.5.2 Choosing the vertex paths |
|
|
75 | (2) |
|
Chapter 5 A Primer on Laplacians |
|
|
77 | (18) |
|
|
|
77 | (2) |
|
|
78 | (1) |
|
5.2 Laplacians On Riemannian Manifolds |
|
|
79 | (4) |
|
|
79 | (2) |
|
5.2.2 Hodge decomposition |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
83 | (14) |
|
5.3.1 Laplacians on graphs |
|
|
83 | (1) |
|
|
84 | (2) |
|
5.3.3 Laplacians on simplicial manifolds |
|
|
86 | (1) |
|
5.3.4 Strongly and weakly defined Laplacians |
|
|
87 | (1) |
|
5.3.5 Hodge decomposition |
|
|
88 | (1) |
|
5.3.6 The cotan Laplacian and beyond |
|
|
88 | (2) |
|
5.3.7 Discrete versus smooth Laplacians |
|
|
90 | (5) |
Section II Applications in Computer Graphics |
|
95 | (82) |
|
Chapter 6 Mesh Parameterization |
|
|
97 | (12) |
|
|
|
97 | (1) |
|
6.2 Applications Of Mesh Parameterization |
|
|
98 | (2) |
|
|
100 | (2) |
|
6.4 Tutte's Barycentric Mapping Theorem |
|
|
102 | (4) |
|
6.5 Solving The Linear Systems |
|
|
106 | (2) |
|
|
108 | (1) |
|
Chapter 7 Planar Shape Deformation |
|
|
109 | (26) |
|
|
|
110 | (1) |
|
7.2 Complex Barycentric Coordinates |
|
|
111 | (12) |
|
7.2.1 Holomorphic functions |
|
|
113 | (5) |
|
7.2.2 General construction of complex barycentric coordinates |
|
|
118 | (3) |
|
|
121 | (2) |
|
7.3 Variational Barycentric Coordinates |
|
|
123 | (4) |
|
7.3.1 Point-based barycentric maps |
|
|
123 | (1) |
|
7.3.2 Point-to-point barycentric coordinates |
|
|
124 | (3) |
|
|
127 | (5) |
|
7.4.1 Log derivative construction |
|
|
127 | (3) |
|
7.4.2 Shape interpolation |
|
|
130 | (1) |
|
7.4.3 Variational conformal maps |
|
|
131 | (1) |
|
7.5 Implementation Details |
|
|
132 | (4) |
|
7.5.1 Visualizing planar maps |
|
|
132 | (3) |
|
Chapter 8 Multi-Sided Patches via Barycentric Coordinates |
|
|
135 | (12) |
|
|
|
136 | (2) |
|
8.1.1 Bezier form of curves |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
8.2 Multisided Bezier Patches In Higher Dimensions |
|
|
138 | (5) |
|
8.2.1 Indexing for S-patches |
|
|
139 | (2) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
143 | (4) |
|
|
143 | (1) |
|
8.3.2 Spatial deformation |
|
|
144 | (3) |
|
Chapter 9 Generalized Triangulations |
|
|
147 | (10) |
|
|
|
147 | (1) |
|
9.2 Generalized Primal-Dual Triangulations |
|
|
148 | (3) |
|
9.2.1 Some classical examples |
|
|
149 | (1) |
|
9.2.2 Primal-dual triangulations (PDT) |
|
|
150 | (1) |
|
9.3 A Characterization Theorem |
|
|
151 | (2) |
|
9.3.1 Combinatorially regular triangulations (CRT) |
|
|
151 | (1) |
|
9.3.2 Equivalence between PDT and CRT |
|
|
152 | (1) |
|
9.3.3 Parametrization of primal-dual triangulations |
|
|
152 | (1) |
|
9.4 Discrete Representation Using Generalized Triangulations |
|
|
153 | (5) |
|
9.4.1 Discrete exterior calculus framework |
|
|
153 | (1) |
|
9.4.2 Applications in mesh optimization |
|
|
154 | (3) |
|
Chapter 10 Self-Supporting Surfaces |
|
|
157 | (20) |
|
|
10.1 Introduction And Historical Overview |
|
|
158 | (4) |
|
10.1.1 What is a masonry structure? |
|
|
158 | (1) |
|
10.1.2 Heyman's safe theorem |
|
|
159 | (1) |
|
10.1.3 Gaudi and hanging nets |
|
|
160 | (1) |
|
10.1.4 Maxwell's reciprocal diagrams |
|
|
161 | (1) |
|
|
162 | (4) |
|
10.2.1 Equilibrium equations |
|
|
163 | (1) |
|
10.2.2 Airy stress potential |
|
|
164 | (1) |
|
10.2.3 Relative curvatures |
|
|
164 | (1) |
|
10.2.4 Curvature interpretation of equilibrium |
|
|
165 | (1) |
|
|
166 | (4) |
|
10.3.1 Thrust network analysis |
|
|
166 | (1) |
|
10.3.2 Thrust networks as block networks |
|
|
167 | (1) |
|
10.3.3 Discrete Airy stress potential |
|
|
167 | (2) |
|
10.3.4 FEM discretization of Airy stress |
|
|
169 | (1) |
|
10.3.5 Discrete curvature interpretation of equilibrium |
|
|
169 | (1) |
|
10.4 Optimizing For Stability |
|
|
170 | (5) |
|
10.4.1 Alternating optimization |
|
|
170 | (2) |
|
10.4.2 Dual formulation as vertex weights |
|
|
172 | (1) |
|
10.4.3 Perfect Laplacian optimization |
|
|
172 | (1) |
|
10.4.4 Relative-curvature-based smoothing |
|
|
173 | (1) |
|
10.4.5 Steel-glass structures and PQ faces |
|
|
174 | (1) |
|
10.4.6 Block layouts from stable surfaces |
|
|
175 | (1) |
|
10.5 Conclusion And Open Problems |
|
|
175 | (5) |
|
10.5.1 Sensitivity analysis of masonry structures |
|
|
176 | (1) |
|
10.5.2 Progressive stable structures |
|
|
176 | (1) |
Section III Applications in Computational Mechanics |
|
177 | (104) |
|
Chapter 11 Applications of Polyhedral Finite Elements in Solid Mechanics |
|
|
179 | (18) |
|
|
|
180 | (3) |
|
11.2 Governing Equations Of Solid Mechanics |
|
|
183 | (1) |
|
11.3 Polyhedral Finite Element Formulation |
|
|
184 | (3) |
|
11.3.1 Weak form of governing equations |
|
|
185 | (1) |
|
|
185 | (1) |
|
11.3.3 Element integration |
|
|
186 | (1) |
|
11.4 Rapid Engineering Analysis |
|
|
187 | (4) |
|
11.5 Fragmentation Modeling |
|
|
191 | (4) |
|
11.5.1 Fracture methodology |
|
|
192 | (1) |
|
11.5.2 Random Voronoi meshes |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
195 | (2) |
|
Chapter 12 Extremely Large Deformation with Polygonal and Polyhedral Elements |
|
|
197 | (32) |
|
|
|
|
|
|
198 | (2) |
|
12.2 Finite Elasticity Formulations |
|
|
200 | (3) |
|
12.2.1 Displacement-based formulation |
|
|
201 | (1) |
|
12.2.2 A general two-field mixed variational formulation |
|
|
201 | (2) |
|
12.3 Polygonal And Polyhedral Approximations |
|
|
203 | (2) |
|
12.3.1 Displacement space on polygons in 2D |
|
|
203 | (1) |
|
12.3.2 Displacement space on polyhedra in 3D |
|
|
204 | (1) |
|
12.3.3 Pressure space on polygons in 2D |
|
|
204 | (1) |
|
12.4 Quadrature Rules And Accuracy Requirements |
|
|
205 | (3) |
|
12.5 Gradient Correction Scheme And Its Properties |
|
|
208 | (5) |
|
12.5.1 Gradient correction for scalar problems |
|
|
208 | (4) |
|
12.5.2 Gradient correction for vectorial problems |
|
|
212 | (1) |
|
12.6 Conforming Galerkin Approximations |
|
|
213 | (1) |
|
|
214 | (7) |
|
12.7.1 Displacement-based polygonal and polyhedral elements |
|
|
214 | (3) |
|
12.7.2 Two-field mixed polygonal elements |
|
|
217 | (4) |
|
12.8 Application To The Study Of Filled Elastomers |
|
|
221 | (9) |
|
12.8.1 Results for filled neo-Hookean elastomers |
|
|
222 | (1) |
|
12.8.2 Results for a filled silicone elastomer |
|
|
223 | (6) |
|
Chapter 13 Maximum-Entropy Meshfree Coordinates in Computational Mechanics |
|
|
229 | (16) |
|
|
|
230 | (1) |
|
13.2 Selecting Barycentric Coordinates Through Entropy Maximization |
|
|
231 | (3) |
|
13.3 Introducing Locality: Local Maximum-Entropy Approximants |
|
|
234 | (4) |
|
|
238 | (2) |
|
|
240 | (3) |
|
13.5.1 High-order partial differential equations |
|
|
240 | (1) |
|
13.5.2 Manifold approximation |
|
|
241 | (2) |
|
|
243 | (2) |
|
|
245 | (18) |
|
|
|
246 | (1) |
|
14.2 High-Order BEM-Based FEM In 2D |
|
|
247 | (6) |
|
14.2.1 Construction of basis functions |
|
|
248 | (1) |
|
14.2.2 Finite element method |
|
|
249 | (1) |
|
14.2.3 Introduction to boundary element methods |
|
|
250 | (2) |
|
14.2.4 Numerical examples |
|
|
252 | (1) |
|
14.3 Adaptive BEM-Based FEM In 2D |
|
|
253 | (5) |
|
14.3.1 Adaptive FEM strategy |
|
|
254 | (1) |
|
14.3.2 Residual-based error estimate for polygonal meshes |
|
|
255 | (1) |
|
14.3.3 Numerical examples |
|
|
256 | (2) |
|
14.4 Developments And Outlook |
|
|
258 | (6) |
|
14.4.1 Hierarchical construction for 3D problems |
|
|
259 | (2) |
|
14.4.2 Convection-adapted basis functions in 3D |
|
|
261 | (2) |
|
Chapter 15 Virtual Element Methods for Elliptic Problems on Polygonal Meshes |
|
|
263 | (18) |
|
|
|
|
|
|
264 | (1) |
|
15.2 Virtual Element Spaces And GBC |
|
|
265 | (8) |
|
|
265 | (1) |
|
15.2.2 Lowest order discrete space |
|
|
265 | (1) |
|
15.2.3 Generalization to arbitrary order discrete spaces |
|
|
266 | (1) |
|
|
267 | (2) |
|
15.2.5 A convenient basis |
|
|
269 | (2) |
|
15.2.6 A link between the bases |
|
|
271 | (2) |
|
15.2.7 Extension to three dimensions |
|
|
273 | (1) |
|
15.3 Virtual Element Method For Elliptic PDES |
|
|
273 | (3) |
|
|
273 | (1) |
|
15.3.2 Overview of the conforming VEM |
|
|
274 | (2) |
|
15.4 Connection With Other Methods |
|
|
276 | (5) |
|
15.4.1 Polygonal and polyhedral finite element method |
|
|
276 | (1) |
|
|
276 | (2) |
|
|
278 | (3) |
Bibliography |
|
281 | (28) |
Index |
|
309 | |