Muutke küpsiste eelistusi

E-raamat: Generalized Continua - from the Theory to Engineering Applications

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

On the roots of continuum mechanics in differential geometry -- a review.- Cosserat media.- Cosserat-type shells.- Cosserat-type rods.- Micromorphic media.- Electromagnetism and generalized continua.- Computational methods for generalized continua.The need of generalized continua models is coming from practice. Complex material behavior sometimes cannot be presented by the classical Cauchy continua. At present the attention of the scientists in this field is focused on the most recent research items • new models, • application of well-known models to new problems, • micro-macro aspects, • computational effort, and • possibilities to identify the constitutive equations The new research directions are discussed in this volume - from the point of view of modeling and simulation, identification, and numerical methods.

This book presents new directions in research on generalized continua, from the point of view of modeling and simulation, identification and numerical methods. Covers micro-macro aspects, computational effort and much more.

Arvustused

From the reviews:

The book under review gathers the lecture notes of the Corse 541 held at CISM in Udine, Italy. The editors and organizers of the course have selected a very important topic which deserves attention and investment of young intellectual forces. The overall result is a textbook of very high quality and the volume will surely become a very important source of information and knowledge, as, together with basic concepts and ideas, it includes some interesting original results. (Francesco dellIsola, Mathematical Reviews, November, 2013)

On the Roots of Continuum Mechanics in Differential Geometry - A Review -
1(64)
P. Steinmann
1 Introduction
1(4)
2 Differential Geometry
5(31)
2.1 Overview
5(1)
2.2 Manifolds
6(3)
2.3 Connection
9(3)
2.4 Parallel Transport
12(1)
2.5 Torsion
13(5)
2.6 Curvature
18(8)
2.7 Metric
26(6)
2.8 Metric Curvature
32(4)
3 Continuum Mechanics
36(25)
3.1 Kinematics
36(4)
3.2 Distortion
40(1)
3.3 Integrability
41(3)
3.4 Elasticity
44(3)
3.5 Elastoplasticity
47(14)
4 Summary
61(4)
Bibliography
61(4)
Cosserat Media
65(66)
H. Altenbach
V.A. Eremeyev
1 Introduction
65(13)
1.1 Elements of Rigid Body Dynamics
67(7)
2.1 Elements of Mechanics of Elastic Rods
74(4)
2 Kinematics of Cosserat Continuum
78(2)
3 Forces and Couples, Stress and Couple Stress Tensors in Micropolar Continua
80(13)
3.1 Forces and Couples
80(2)
3.2 Eulers Laws of Motion
82(1)
3.3 Stress Tensor and Couple Stress Tensor
83(4)
3.4 Principal Stresses in Micropolar Continua
87(2)
3.5 Equations of Motion
89(1)
3.6 Boundary-Value Problems
90(3)
4 Constitutive Equations of Cosserat Continua
93(38)
4.1 General Principles Restricting the Constitutive Equations
93(2)
4.2 Natural Lagrangian Strain Measures of Cosserat Continuum
95(6)
4.3 Vectorial Parameterizations of Strain Measures
101(1)
4.4 Kinetic Constitutive Equations
102(2)
4.5 Material Symmetry Group
104(4)
4.6 Non-Linear Micropolar Isotropic Solids
108(2)
4.7 Physically Linear Micropolar Solids
110(1)
4.8 Linear Micropolar Isotropic Solids
111(2)
4.9 Constraints
113(2)
4.10 Constitutive Inequalities
115(4)
4.11 Micropolar Fluid
119(1)
4.12 Some Sources of Cosserat's Constitutive Equations
120(11)
Bibliography
122(9)
Cosserat-Type Shells
131(48)
H. Altenbach
Victor A. Eremeyev
1 Introduction
131(6)
2 Cosserat Surface
137(3)
2.1 Kinematics
137(1)
2.2 Strain Energy Density of an Elastic Cosserat Surface
138(1)
2.3 Principle of Virtual Work and the Equilibrium Conditions
139(1)
3 Micropolar Shells
140(18)
3.1 Kinematics
141(2)
3.2 Principle of Virtual Work and Boundary-Value Problems
143(2)
3.3 On the Constitutive Equations
145(1)
3.4 Compatibility Conditions
146(1)
3.5 Variational Statements
147(2)
3.6 Linear Theory of Micropolar Shells
149(3)
3.7 Constitutive Restrictions for Micropolar Shells
152(3)
3.8 Strong Ellipticity Condition and Acceleration Waves
155(2)
3.9 Principle Peculiarities of the Micropolar Shell Theory
157(1)
4 Theories of Shells and Plates by Reduction of the Three-Dimensional Micropolar Continuum
158(5)
4.1 Basic Equations of Three-Dimensional Linear Cosserat Continuum
158(2)
4.2 Transition to the Two-Dimensional Equilibrium Equations: Eringen's Approach
160(2)
4.3 Transition to the Two-Dimensional Equilibrium Equations: Other Reduction Procedures
162(1)
5 Conclusions and Discussion
163(16)
Bibliography
165(14)
Cosserat-Type Rods
179(70)
H. Altenbach
M. Birsan
Victor A. Eremeyev
1 Introduction
179(2)
2 Kinematical Model of Directed Curves
181(3)
3 Governing Equations of the Non-Linear Theory
184(5)
4 Constitutive Equations for Thermoelastic Porous Rods
189(3)
4.1 Free Energy Function
190(1)
4.2 Structure of Constitutive Tensors
190(2)
5 Linearized Equations of Directed Rods
192(8)
5.1 Boundary-Initial-Value Problems
193(1)
5.2 Uniqueness of Solution
194(2)
5.3 Existence Results in the Dynamical Theory
196(4)
6 Statical Theory for Rods
200(8)
6.1 Inequalities of Korn-Type for Cosserat Rods
201(3)
6.2 Existence of Solution
204(2)
6.3 Analysis of Pure Traction Problems
206(2)
7 Equations for Straight Rods
208(5)
7.1 Decoupling of the Problem
209(1)
7.2 Solution of Simple Problems
210(3)
8 Derivation of Rods Equations from the Three-Dimensional Equations
213(3)
9 Identification of Constitutive Coefficients for Thermo-Elastic Porous Orthotropic Rods
216(9)
9.1 Bending and Extension of Orthotropic Rods
217(1)
9.2 Torsion of Orthotropic Rods
218(1)
9.3 Shear Vibrations of an Orthotropic Rod
219(2)
9.4 Problem of Thermal Deformation
221(1)
9.5 Extension of Porous Thermo-Elastic Rods
222(3)
10 Extended Thermodynamic Theory for Rods with Two Temperature Fields
225(7)
10.1 Basic Laws
225(2)
10.2 Constitutive Equations
227(5)
11 Non-Homogeneous Rods and Composite Beams Analyzed by the Direct Approach
232(12)
11.1 Constitutive Coefficients for Non-Homogeneous Rods
235(5)
11.2 Effective Stiffness Properties of Composite Beams
240(4)
12 Conclusions
244(5)
Bibliography
244(5)
Micromorphic Media
249(52)
S. Forest
1 Introduction
249(2)
1.1 Scope of this chapter
249(1)
1.2 Notations
250(1)
2 Micromorphic Continua
251(7)
2.1 Kinematics of Micromorphic Media
251(2)
2.2 Principle of Virtual Power
253(2)
2.3 Elastoviscoplasticity of Micromorphic Media
255(3)
3 From a Heterogeneous Cauchy Material to a Homogeneous Equivalent Micromorphic Medium
258(16)
3.1 Definition of the Micromorphic Degrees of Freedom
260(2)
3.2 Higher Order Strain Measures
262(1)
3.3 Polynomial Ansatz
263(2)
3.4 Identification of Generalised Effective Elastic Moduli
265(8)
3.5 Validation of the Extended Homogenisation Method
273(1)
4 Homogenization of Micromorphic Media
274(27)
4.1 Multiscale Asymptotic Expansion Method
274(16)
4.2 Application to Polycrystalline Plasticity
290(11)
Bibliography
296(5)
Electromagnetism and Generalized Continua
301(60)
G.A. Maugin
1 Introduction and Historical Perspective
301(5)
2 Electromagnetic Sources in Galilean Invariant Continuum Physics
306(6)
2.1 Maxwell's Equations
306(3)
2.2 Ponderomotive Force and Couple in a Continuum
309(3)
3 Deformable Magnetized Bodies with Magnetic Microstructure
312(14)
3.1 Model of Interactions
312(3)
3.2 Statement of Global Balance Laws
315(4)
3.3 Approach via the Principle of Virtual Power
319(2)
3.4 Hamiltonian Variational Formulation
321(2)
3.5 Ferrimagnetic and Antiferromagnetic Materials
323(2)
3.6 Analogy with Cosserat Continua
325(1)
3.7 Reduction to a Model without Microstructure (Paramagnetic and Soft-Ferromagnetic Bodies)
325(1)
4 Deformable Dielectrics with Electric-Polarization Microstructure
326(6)
4.1 Model of Interactions
326(2)
4.2 Approach via the Principle of Virtual Power
328(1)
4.3 Hamiltonian Variational Principle
329(1)
4.4 Antiferroelectric Materials
330(1)
4.5 Analogy with Cosserat Continua
330(1)
4.6 Reduction to a Model without Microstructure
331(1)
4.7 Remark on Electric Quadrupoles
331(1)
5 Dynamical Couplings between Deformation and Electromagnetic Microstructure
332(13)
5.1 Introductory Note: Resonance Coupling between Wave Modes
332(3)
5.2 The Case of Magnetoelasticity in Ferromagnets
335(8)
5.3 The Case of Electroelasticity in Ferroelectrics
343(2)
6 Configurational Forces in Presence of an Electromagnetic Microstructure
345(8)
6.1 Definition
345(1)
6.2 Reminder of a Purely Mechanical Case
346(3)
6.3 The Ferroelectric Case
349(2)
6.4 The Ferromagnetic Case
351(2)
7 Conclusive Remark
353(8)
A Reminder of Basic Equations of Generalized Mechanical Continua
353(2)
Bibliography
355(6)
Computational Methods for Generalised Continua
361
R. deBorst
1 Introduction
361(1)
2 Isotropic Elasticity-Based Damage
362(4)
3 Stability, Ellipticity, and Mesh Sensitivity
366(6)
3.1 Stability and Ellipticity
366(4)
3.2 Mesh Sensitivity
370(2)
4 Non-Local and Gradient Damage Models
372(5)
4.1 Non-local Damage Models
372(1)
4.2 Gradient Damage Models
373(4)
5 Cosserat Elasto-Plasticity
377(6)
5.1 Cosserat Elasticity
377(2)
5.2 Cosserat Plasticity
379(3)
5.3 A Return-Mapping Algorithm
382(1)
5.4 Consistent Tangent Operator
383(1)
6 Non-Local and Gradient Plasticity
383
6.1 Non-Local Plasticity
383(2)
6.2 Gradient Plasticity
385
Bibliography
387