Muutke küpsiste eelistusi

E-raamat: Generalized Fractional Programming

  • Formaat: 315 pages
  • Ilmumisaeg: 01-Nov-2017
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781536128703
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 259,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 315 pages
  • Ilmumisaeg: 01-Nov-2017
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781536128703
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph is aimed at presenting smooth and unified generalized fractional programming (or a program with a finite number of constraints). Under the current interdisciplinary computer-oriented research environment, these programs are among the most rapidly expanding research areas in terms of its multi-facet applications and empowerment for real world problems that can be handled by transforming them into generalized fractional programming problems. Problems of this type have been applied for the modeling and analysis of a wide range of theoretical as well as concrete, real world, practical problems. More specifically, generalized fractional programming concepts and techniques have found relevance and worldwide applications in approximation theory, statistics, game theory, engineering design (earthquake-resistant design of structures, design of control systems, digital filters, electronic circuits, etc.), boundary value problems, defect minimization for operator equations, geometry, random graphs, graphs related to Newton flows, wavelet analysis, reliability testing, environmental protection planning, decision making under uncertainty, geometric programming, disjunctive programming, optimal control problems, robotics, and continuum mechanics, among others. It is highly probable that among all industries, especially for the automobile industry, robots are about to revolutionize the assembly plants forever. That would change the face of other industries toward rapid technical innovation as well.The main focus of this monograph is to empower graduate students, faculty and other research enthusiasts for more accelerated research advances with significant applications in the interdisciplinary sense without borders. The generalized fractional programming problems have a wide range of real-world problems, which can be transformed in some sort of a generalized fractional programming problem. Consider fractional programs that arise from management decision science; by analyzing system efficiency in an economical sense, it is equivalent to maximizing system efficiency leading to fractional programs with occurring objectives:Maximizing productivityMaximizing return on investmentMaximizing return/ riskMinimizing cost/timeMinimizing output/inputThe authors envision that this monograph will uniquely present the interdisciplinary research for the global scientific community (including graduate students, faculty, and general readers). Furthermore, some of the new concepts can be applied to duality theorems based on the use of a new class of multi-time, multi-objective, variational problems as well.
Preface ix
Introduction 1(28)
1 Higher-Order Parametric Optimality Conditions
29(40)
1 The Significance of Parametric Optimality
30(2)
2 Generalized Sonvexities
32(5)
3 Second-Order Necessary Optimality
37(5)
4 Sufficient Optimality Conditions
42(27)
References
67(2)
2 Hybrid (Φ, η, Ω, ζ, ρ, θ, m)-Sonvexities and Parametric Optimality Conditions
69(24)
1 Role of Hybrid Sonvexity and Optimality Conditions
70(1)
2 Basic Concepts
70(5)
3 Sufficient Optimality Conditions
75(11)
4 Concluding Remarks
86(7)
References
87(6)
3 Generalized Second-Order Parametric Optimality Conditions
93(32)
1 Role of Patrametric Optimality Conditions
93(2)
2 Basic Concepts
95(2)
3 Sufficient Optimality Conditions
97(16)
4 Concluding Remarks
113(12)
References
115(10)
4 Generalized Higher Order (Φ, η, ω, ζ, ρ θ, m)-Invexities
125(24)
1 Higher-Order Sufficient Optimality Conditions
125(1)
2 Preliminaries
126(4)
3 Sufficient Optimality Conditions
130(11)
4 Concluding Remarks
141(8)
References
143(6)
5 Hybrid Parametric Duality Models
149(48)
1 Role of Duality Models
149(2)
2 Generalized Sonvexities
151(3)
3 Duality Model I
154(7)
4 Duality Model II
161(24)
5 Concluding Remarks
185(12)
References
187(10)
6 Hybrid Classes of Duality Models in Discrete Minmax Fractional Programming
197(46)
1 Generalized Higher-Order Parametric Duality Models
198(2)
2 Generalized Sounivexty
200(4)
3 Duality Model I
204(17)
4 Duality Model II
221(9)
5 Concluding Remarks
230(13)
References
233(10)
7 Hanson-Antczak-Type Generalized V-Invexity
243(34)
1 Role of Semiinfinite Multiobjective Fractional Programs
243(2)
2 Hanson-Antczak-Type Sonvexities
245(5)
3 Duality Model I
250(4)
4 Duality Model II
254(5)
5 Duality Model III
259(7)
6 Duality Model IV
266(6)
7 General Remarks
272(5)
References
275(2)
Bibliography 277(22)
About the Authors 299(4)
Index 303