Muutke küpsiste eelistusi

E-raamat: Generalized Preinvexity and Second Order Duality in Multiobjective Programming

  • Formaat - PDF+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces readers to several new generalized preinvex functions and generalized invariant monotone functions. It begins by describing the main properties of these functions and various relations. Several examples are then presented to illustrate various interesting relationships among preinvex functions and the properly inclusive relations among the generalized invariant monotonicities. In addition, several second order and higher order symmetric duality models are provided for multi-objective nonlinear programming problems. Lastly, weak and strong duality theorems under generalized convexity assumptions are provided.





The book offers a well-synthesized, accessible, and usable treatment for students, researchers and practitioners in the areas of OR, optimization, applied mathematics and engineering, and all those working on a wide range of related problems, which include financial institutions, logistics, transportation, traffic management, etc.
Part I Generalized Preinvexity
1 Preinvex Functions
3(18)
1.1 Introduction
3(1)
1.2 Notations
4(2)
1.3 Semicontinuity and Preinvex Functions
6(7)
1.4 Characterizations of Preinvex Functions
13(8)
2 Semistrictly Preinvex Functions
21(22)
2.1 Introduction and Notations
21(1)
2.2 Properties of Semistrictly Preinvex Functions
22(5)
2.3 Relationship Between Preinvexity and Semistrict Preinvexity
27(5)
2.4 Lower Semicontinuity and Semistrict Preinvexity
32(3)
2.5 Gradient Properties of Strictly and Semistrictly Preinvex Functions
35(8)
3 Semipreinvex Functions
43(10)
3.1 Introduction
43(1)
3.2 Some New Properties of Semipreinvex Functions
44(4)
3.3 Applications to Multiobjective Fractional Programming
48(5)
4 Prequasiinvex Functions
53(24)
4.1 Introduction and Preliminaries
53(3)
4.2 Properties of Prequasiinvex Functions
56(9)
4.3 Properties of Semistrictly Prequasiinvex Functions
65(4)
4.4 Properties of Strictly Prequasiinvex Functions
69(2)
4.5 Applications of Prequasiinvex Type Functions
71(6)
Part II Generalized Invariant Monotonicity
5 Generalized Invexity and Generalized Invariant Monotonicity
77(18)
5.1 Introduction
77(1)
5.2 Invariant Monotone and Strictly Invariant Monotone Maps
78(3)
5.3 Invariant Quasimonotone Maps
81(3)
5.4 Invariant Pseudomonotone Maps
84(3)
5.5 Strictly Invariant Pseudomonotone Maps
87(3)
5.6 Conclusions
90(5)
Part III Duality in Multiobjective Programming
6 Multiobjective Wolfe Type Second-Order Symmetric Duality
95(14)
6.1 Introduction
95(1)
6.2 Notations and Definitions
96(1)
6.3 Wolfe Type I Symmetric Duality
97(5)
6.4 Wolfe Type II Symmetric Duality
102(7)
7 Multiobjective Mond-Weir-Type Second-Order Symmetric Duality
109(12)
7.1 Introduction
109(1)
7.2 Notations and Preliminaries
109(1)
7.3 Mond-Weir-Type Symmetric Duality
110(9)
7.4 Remarks and Examples
119(2)
8 Multiobjective Second-Order Duality with Cone Constraints
121(28)
8.1 Introduction
121(2)
8.2 Preliminaries
123(3)
8.3 Weak Duality
126(5)
8.4 Strong Duality
131(2)
8.5 Converse Duality
133(16)
9 Multiobjective Higher-Order Duality
149(10)
9.1 Introduction
149(1)
9.2 Mond-Weir Type Converse Duality Involving Cone Constraints
150(3)
9.3 Mond-Weir Type Symmetric Duality
153(5)
9.4 Special Cases
158(1)
References 159(6)
Index 165