Muutke küpsiste eelistusi

E-raamat: Generalized Riemann Problems in Computational Fluid Dynamics

(Hebrew University of Jerusalem), (Hebrew University of Jerusalem)
  • Formaat - PDF+DRM
  • Hind: 51,86 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Numerical simulation of compressible, inviscid time-dependent flow is a major branch of computational fluid dynamics. Its primary goal is to obtain accurate representation of the time evolution of complex flow patterns, involving interactions of shocks, interfaces, and rarefaction waves. The Generalized Riemann Problem (GRP) algorithm, developed by the authors for this purpose, provides a unifying 'shell' which comprises some of the most commonly used numerical schemes of this process. This monograph gives a systematic presentation of the GRP methodology, starting from the underlying mathematical principles, through basic scheme analysis and scheme extensions (such as reacting flow or two-dimensional flows involving moving or stationary boundaries). An array of instructive examples illustrates the range of applications, extending from (simple) scalar equations to computational fluid dynamics. Background material from mathematical analysis and fluid dynamics is provided, making the book accessible to both researchers and graduate students of applied mathematics, science and engineering.

Arvustused

Review of the hardback: ' a welcome addition to the literature.' Journal of Fluid Mechanics Review of the hardback: ' book is well written, exhibits a nice balance between mathematics and fluid dynamics, and can serve as a reference work for GRP-based methods.' Zentralblatt fur Mathematik

Muu info

This monograph presents the GRP algorithm and is accessible to researchers and graduate students alike.
List of Figures
xi
Preface xv
Introduction
1(4)
I BASIC THEORY
5(228)
Scalar Conservation Laws
7(29)
Theoretical Background
7(18)
Basic Concepts of Numerical Approximation
25(11)
The GRP Method for Scalar Conservation Laws
36(45)
From Godunov to the GRP Method
36(13)
1-D Sample Problems
49(14)
The Linear Conservation Law
49(6)
The Burgers Nonlinear Conservation Law
55(8)
2-D Sample Problems
63(18)
Systems of Conservation Laws
81(54)
Nonlinear Hyperbolic Systems in One Space Dimension
81(20)
Euler Equations of Quasi-1-D, Compressible, Inviscid Flow
101(34)
The Generalized Riemann Problem (GRP) for Compressible Fluid Dynamics
135(49)
The GRP for Quasi-1-D, Compressible, Inviscid Flow
135(34)
The GRP Numerical Method for Quasi-1-D, Compressible, Inviscid Flow
169(15)
Analytical and Numerical Treatment of Fluid Dynamical Problems
184(49)
The Shock Tube Problem
184(5)
Wave Interactions
189(29)
Shock--Contact Interaction
192(3)
Shock--Shock Interaction
195(8)
Shock--CRW Interaction
203(4)
CRW--Contact Interaction
207(11)
Spherically Converging Flow of Cold Gas
218(1)
The Flow Induced by an Expanding Sphere
219(3)
Converging--Diverging Nozzle Flow
222(11)
II NUMERICAL IMPLEMENTATION
233(80)
From the GRP Algorithm to Scientific Computing
235(16)
General Discussion
235(2)
Strang's Operator-Splitting Method
237(7)
Two-Dimensional Flow in Cartesian Coordinates
244(7)
Geometric Extensions
251(18)
Grids That Move in Time
251(1)
Singularity Tracking
252(3)
Moving Boundary Tracking (MBT)
255(14)
Basic Setup
257(7)
Survey of the Full MBT Algorithm
264(2)
An Example: Shock Lifting of an Elliptic Disk
266(3)
A Physical Extension: Reacting Flow
269(36)
The Equations of Compressible Reacting Flow
271(5)
The Chapman-Jouguet (C--J) Model
276(5)
The Z--N--D (Zeldovich-von Neumann-Doring) Solution
281(5)
The Linear GRP for the Reacting-Flow System
286(12)
The GRP Scheme for Reacting Flow
298(7)
Wave Interaction in a Duct -- A Comparative Study
305(8)
Entropy Conditions for Scalar Conservation Laws 313(7)
Convergence of the Godunov Scheme 320(10)
Riemann Solver for a γ-Law Gas 330(3)
The MUSCL Scheme 333(4)
Bibliography 337(8)
Glossary 345(2)
Index 347