Muutke küpsiste eelistusi

E-raamat: Genetic Programming: 17th European Conference, EuroGP 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 8599
  • Ilmumisaeg: 21-Aug-2014
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662443033
  • Formaat - PDF+DRM
  • Hind: 49,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 8599
  • Ilmumisaeg: 21-Aug-2014
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662443033

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book constitutes the refereed proceedings of the 17th European Conference on Genetic Programming, Euro GP 2014, held in Grenada, Spain, in April 2014 co-located with the Evo 2014 events, Evo BIO, Evo COP, Evo MUSART and Evo Applications.The 15 revised full papers presented together with 5 poster papers were carefully reviewed and selected form 40 submissions. The wide range of topics in this volume reflects the current state of research in the field. Thus, we see topics as diverse as search-based software engineering, image analysis, dynamical systems, evolutionary robotics and operational research to the foundations of search as characterized through semantic variation operators.

Higher Order Functions for Kernel Regression.- Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets.- Learning Dynamical Systems Using Standard Symbolic Regression.- Semantic Crossover Based on the Partial Derivative Error.- A Multi-dimensional Genetic Programming Approach for Multi-class Classification Problems.- Generalisation Enhancement via Input Space Transformation: A GP Approach.- On Diversity, Teaming, and Hierarchical Policies: Observations from the Keepaway Soccer Task.- Genetically Improved CUDA C++ Software.- Measuring Mutation Operators Exploration-Exploitation Behaviour and Long-Term Biases.- Exploring the Search Space of Hardware / Software Embedded Systems by Means of GP.- Enhancing Branch-and-Bound Algorithms for Order Acceptance and Scheduling with Genetic Programming.- Using Genetic Improvement and Code Transplants to Specialise a C++ Program to a Problem Class.- ESAGP A Semantic GP Framework Based on Alignment in the Error Space.- Building a Sta

ge 1 Computer Aided Detector for Breast Cancer Using Genetic Programming.- NEAT, There s No Bloat.- The Best Things Don t Always Come in Small Packages: Constant Creation in Grammatical Evolution.- Asynchronous Evolution by Reference-Based Evaluation: Tertiary Parent Selection and Its Archive.- Behavioral Search Drivers for Genetic Programing.- Cartesian Genetic Programming: Why No Bloat.- On Evolution of Multi-category Pattern Classifiers Suitable for Embedded Systems.
Higher Order Functions for Kernel Regression.- Flash: A GP-GPU Ensemble
Learning System for Handling Large Datasets.- Learning Dynamical Systems
Using Standard Symbolic Regression.- Semantic Crossover Based on the Partial
Derivative Error.- A Multi-dimensional Genetic Programming Approach for
Multi-class Classification Problems.- Generalisation Enhancement via Input
Space Transformation: A GP Approach.- On Diversity, Teaming, and Hierarchical
Policies: Observations from the Keepaway Soccer Task.- Genetically Improved
CUDA C++ Software.- Measuring Mutation Operators Exploration-Exploitation
Behaviour and Long-Term Biases.- Exploring the Search Space of Hardware /
Software Embedded Systems by Means of GP.- Enhancing Branch-and-Bound
Algorithms for Order Acceptance and Scheduling with Genetic
Programming.- Using Genetic Improvement and Code Transplants to Specialise a
C++ Program to a ProblemClass.- ESAGP A Semantic GP Framework Based on
Alignment in the Error Space.- Building a Stage 1 Computer Aided Detector for
Breast Cancer Using Genetic Programming.- NEAT, Theres No Bloat.- The Best
Things Dont Always Come in Small Packages: Constant Creation in Grammatical
Evolution.- Asynchronous Evolution by Reference-Based Evaluation: Tertiary
Parent Selection and Its Archive.- Behavioral Search Drivers for Genetic
Programing.- Cartesian Genetic Programming: Why No Bloat.- On Evolution of
Multi-category Pattern Classifiers Suitable for Embedded Systems.