Muutke küpsiste eelistusi

E-raamat: Genetic Programming: 23rd European Conference, EuroGP 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15-17, 2020, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 23rd European Conference on Genetic Programming, EuroGP 2020, held as part of Evo*2020, in Seville, Spain, in April 2020, co-located with the Evo*2020 events EvoCOP, EvoMUSART and EvoApplications.
The 12 full papers and 6 short papers presented in this book were carefully reviewed and selected from 36 submissions. The papers cover a wide spectrum of topics, including designing GP algorithms for ensemble learning, comparing GP with popular machine learning algorithms, customising GP algorithms for more explainable AI applications to real-world problems.

Hessian Complexity Measure for Genetic Programming-based Imputation Predictor Selection in Symbolic Regression with Incomplete Data.- Seeding Grammars in Grammatical Evolution to Improve Search Based Software Testing.- Incremental Evolution and Development of Deep Artificial Neural Networks.- Investigating the Use of Geometric Semantic Operators in Vectorial Genetic Programming.- Comparing Genetic Programming Approaches for Non-Functional Genetic Improvement.- Automatically Evolving Lookup Tables for Function Approximation.- Optimising Optimisers with Push GP.- An Evolutionary View on Reversible Shift-invariant Transformations.- Benchmarking Manifold Learning Methods on a Large Collection of Datasets.- Ensemble Genetic Programming.- SGP-DT: Semantic Genetic Programming Based on Dynamic Targets.- Effect of Parent Selection Methods on Modularity.- Time Control or Size Control? Reducing Complexity and Improving Accuracy of Genetic Programming Models.- Challenges of Program Synthesis with Grammatical Evolution.- Detection of Frailty Using Genetic Programming : The Case of Older People in Piedmont, Italy.- Is k Nearest Neighbours Regression Better than GP.- Guided Subtree Selection for Genetic Operators in Genetic Programming for Dynamic Flexible Job Shop Scheduling.- Classification of Autism Genes using Network Science and Linear Genetic Programming.