Muutke küpsiste eelistusi

E-raamat: Genetic Programming Theory and Practice X

Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP.

Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of  injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data.

Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.

Arvustused

From the book reviews:

This book reflects the progress made in GP during recent years. It covers a large range of up-to-date applications and theoretical issues. All of the papers are valuable and are recommended reading for AI scientists or novices. (Svetlana Segarceanu, Computing Reviews, July, 2014)

1 Evolving SQL Queries from Examples with Developmental Genetic Programming
1(14)
Thomas Helmuth
Lee Spector
2 A Practical Platform for On-Line Genetic Programming for Robotics
15(16)
Terence Soule
Robert B. Heckendorn
3 Cartesian Genetic Programming for Image Processing
31(14)
Simon Harding
Jurgen Leitner
Jurgen Schmidhuber
4 A New Mutation Paradigm for Genetic Programming
45(14)
Christian Darabos
Mario Giacobini
Ting Hu
Jason H. Moore
5 Introducing an Age-Varying Fitness Estimation Function
59(14)
Babak Hodjat
Hormoz Shahrzad
6 EC-Star: A Massive-Scale, Hub and Spoke, Distributed Genetic Programming System
73(14)
Una-May O'Reilly
Mark Wagy
Babak Hodjat
7 Genetic Analysis of Prostate Cancer Using Computational Evolution, Pareto-Optimization and Post-processing
87(16)
Jason H. Moore
Douglas P. Hill
Arvis Sulovari
La Creis Kidd
8 Meta-Dimensional Analysis of Phenotypes Using the Analysis Tool for Heritable and Environmental Network Associations (ATHENA): Challenges with Building Large Networks
103(14)
Marylyn D. Ritchie
Emily R. Holzinger
Scott M. Dudek
Alex T. Frase
Prabhakar Chalise
Brooke Fridley
9 A Baseline Symbolic Regression Algorithm
117(22)
Michael F. Korns
10 Symbolic Regression Model Comparison Approach Using Transmitted Variation
139(16)
Flor A. Castillo
Carlos M. Villa
Arthur K. Kordon
11 A Framework for the Empirical Analysis of Genetic Programming System Performance
155(16)
Oliver Flasch
Thomas Bartz-Beielstein
12 More or Less? Two Approaches to Evolving Game-Playing Strategies
171(16)
Amit Benbassat
Achiya Elyasaf
Moshe Sipper
13 Symbolic Regression Is Not Enough: It Takes a Village to Raise a Model
187(18)
Mark E. Kotanchek
Ekaterina Vladislavleva
Guido Smits
14 Flex GProxy: Prototyping Flexibly-Scaled, Flexibly-Factored Genetic Programming for the Cloud
205(18)
James McDermott
Kalyan Veeramachaneni
Una-May O'Reilly
15 Representing Communication and Learning in Femtocell Pilot Power Control Algorithms
223(16)
Erik Hemberg
Lester Ho
Michael O'Neill
Holger Claussen
Index 239