Muutke küpsiste eelistusi

E-raamat: Genetic Programming Theory and Practice XIII

Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: multi-objective genetic programming, learning heuristics, Kaizen programming, Evolution of Everything (EvE), lexicase selection, behavioral program synthesis, symbolic regression with noisy training data, graph databases, and multidimensional clustering. It also covers several chapters on best practices and lesson learned from hands-on experience. Additional application areas include financial operations, genetic analysis, and predicting product choice. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.

Evolving Simple Symbolic Regression Models by Multi-objective Genetic Programming.- Learning Heuristics for Mining RNA Sequence-Structure Motifs.- Kaizen Programming for Feature Construction for Classification.- GP as if You Meant It: An Exercise for Mindful Practice.- nPool: Massively Distributed Simultaneous Evolution and Cross-Validation in EC-Star.- Highly Accurate Symbolic Regression with Noisy Training Data.- Using Genetic Programming for Data Science: Lessons Learned.- The Evolution of Everything (EvE) and Genetic Programming.- Lexicase selection for program synthesis: a Diversity Analysis.- Using Graph Databases to Explore the Dynamics of Genetic Programming Runs.- Predicting Product Choice with Symbolic Regression and Classification.- Multiclass Classification Through Multidimensional Clustering.- Prime-Time: Symbolic Regression takes its place in the Real World.
Evolving Simple Symbolic Regression Models by Multi-objective Genetic Programming.- Learning Heuristics for Mining RNA Sequence-Structure Motifs.- Kaizen Programming for Feature Construction for Classification.- GP as if You Meant It: An Exercise for Mindful Practice.- nPool: Massively Distributed Simultaneous Evolution and Cross-Validation in EC-Star.- Highly Accurate Symbolic Regression with Noisy Training Data.- Using Genetic Programming for Data Science: Lessons Learned.- The Evolution of Everything (EvE) and Genetic Programming.- Lexicase selection for program synthesis: a Diversity Analysis.- Using Graph Databases to Explore the Dynamics of Genetic Programming Runs.- Predicting Product Choice with Symbolic Regression and Classification.- Multiclass Classification Through Multidimensional Clustering.- Prime-Time: Symbolic Regression takes its place in the Real World.